Background: Clinical research suggests that a novel spinal cord stimulation (SCS) waveform, known as Burst-SCS, specifically targets cognitive-motivational aspects of pain. The objective of the present study was to assess the cognitive-motivational aspects of Tonic- and Burst SCS-induced pain relief, by means of exit latency in the mechanical conflict-avoidance system (MCAS), in a rat model of chronic neuropathic pain.
Methods: Exit latency on the MCAS operant testing setup was evaluated at various probe heights for rats (n = 26) with chronic neuropathic pain induced by a partial sciatic nerve ligation (PSNL).
Objectives: This study utilizes a model of long-term spinal cord stimulation (SCS) in experimental painful diabetic polyneuropathy (PDPN) to investigate the behavioral response during and after four weeks of SCS (12 hours/day). Second, we investigated the effect of long-term SCS on peripheral cutaneous blood perfusion in experimental PDPN.
Methods: Mechanical sensitivity was assessed in streptozotocin induced diabetic rats (n = 50) with von Frey analysis.
Objective: Evidence from prospective studies for long-term treatment efficacy of spinal cord stimulation (SCS) in painful diabetic peripheral neuropathy (PDPN) is not available. We report prospective data on the effect of SCS on pain ratings, treatment success and failure, and complications during a 5-year follow-up in patients with PDPN.
Research Design And Methods: Patients with PDPN ( = 48) were included in this prospective multicenter study.
It is well established that the cholesterol-transporter apolipoprotein ε (APOE) genotype is associated with the risk of developing neurodegenerative diseases. Recently, brain functional connectivity (FC) in apoE-ε4 carriers has been investigated by means of resting-state fMRI, showing a marked differentiation in several functional networks at different ages compared with carriers of other apoE isoforms. The causes of such hampered FC are not understood.
View Article and Find Full Text PDF