Publications by authors named "Maarten Van den Berge"

Background: Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation caused by ongoing inflammatory and remodeling processes of the airways and lung tissue. Inflammation can be targeted by corticosteroids. However, airway inflammation is generally less responsive to steroids in COPD than in asthma.

View Article and Find Full Text PDF

Asthma and COPD are both heterogeneous lung diseases including many different phenotypes. The classical asthma and COPD phenotypes are easy to discern because they reflect extremes of a phenotypical spectrum. Thus asthma in childhood and COPD in smokers have their own phenotypic expression with underlying pathophysiological mechanisms that differ importantly.

View Article and Find Full Text PDF

In spite of the data suggesting the potential of urinary desmosine (DES) and isodesmosine (IDS) as biomarkers for elevated lung elastic fiber turnover, further validation in large-scale studies of COPD populations, as well as the analysis of longitudinal samples is required. Validated analytical methods that allow the accurate and precise quantification of DES and IDS in human urine are mandatory in order to properly evaluate the outcome of such clinical studies. In this work, we present the development and full validation of two methods that allow DES and IDS measurement in human urine, one for the free and one for the total (free+peptide-bound) forms.

View Article and Find Full Text PDF

Background: It has been suggested that smoking asthmatics benefit less from corticosteroid treatment than never-smoking asthmatics. We investigated differences in blood and sputum inflammatory profiles between ex-, current-, and never-smokers and assessed their ICS treatment response after 2-week and 1-year treatment.

Methods: We analyzed FEV1, PC20 methacholine and PC20 AMP, (differential) cell counts in sputum and blood in ex-, current- and never-smokers at baseline (n=114), after 2-week treatment with fluticasone 500 or 2000 μg/day (n=76) and after 1-year treatment with fluticasone 500 μg/day or a variable dose of fluticasone based on a self-management plan (n=64).

View Article and Find Full Text PDF

Background: We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production and barrier function.

Methods: We induced oxidative stress by H2O2 and/or cigarette smoke extract (CSE) in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBEC) derived by brushings from asthma patients, COPD patients, and smoking and non-smoking control individuals. We investigated effects of budesonide on barrier function (electrical resistance) and TNF-α-induced proinflammatory cytokine production (IL-8/CXCL8, granulocyte macrophage-colony stimulating factor (GM-CSF)).

View Article and Find Full Text PDF

Background: A core feature of chronic obstructive pulmonary disease (COPD) is the accelerated decline in forced expiratory volume in one second (FEV1). The recent Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) study suggested that particular phenotypes of COPD benefit from fluticasone±salmeterol by reducing the rate of FEV1 decline, yet the underlying mechanisms are unknown.

Methods: Whole-genome gene expression profiling using the Affymetrix Gene ST array (V.

View Article and Find Full Text PDF

The molecular basis for airway epithelial fragility in asthma has remained unclear. We investigated whether the loss of caveolin-1, the major component of caveolae and a known stabilizer of adherens junctions, contributes to epithelial barrier dysfunction in asthma. We studied the expression of caveolin-1 and adhesion molecules E-cadherin and β-catenin in airway sections, and we cultured bronchial epithelial cells from patients with asthma and from healthy control subjects.

View Article and Find Full Text PDF

Rationale: Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function.

Objectives: We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy.

Methods: Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.

View Article and Find Full Text PDF

Traditionally, asthma has been considered a disease that predominantly involves the large airways. Today, this concept is being challenged, and increasing evidence has become available showing that abnormalities in the small airways also contribute to the clinical expression of asthma. The small airways can be affected by inflammation, remodeling, and changes in the surrounding tissue, all contributing to small-airways dysfunction.

View Article and Find Full Text PDF

Background: WNT signalling is activated during lung tissue damage and inflammation. We investigated whether lung epithelial expression of WNT ligands, receptors (frizzled; FZD) or target genes is dysregulated on cigarette smoking and/or in chronic obstructive pulmonary disease (COPD).

Methods: We studied this in human lung epithelial cell lines and primary bronchial epithelial cells (PBEC) from COPD patients and control (non-)smokers, at baseline and on cigarette smoke extract (CSE) exposure.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples.

View Article and Find Full Text PDF

Background: Inhaled glucocorticosteroids reduce airway inflammation in asthma patients, thereby improving lung function and reducing airway hyperresponsiveness and symptoms. The response to glucocorticosteroids can be measured with the glucocorticosteroid skin-blanching test. We investigated if asthmatics have a lower skin-blanching response to glucocorticosteroids than non-asthmatic subjects and if asthmatics with airway obstruction have lower skin-blanching response than those without obstruction.

View Article and Find Full Text PDF

Background: Frequent exacerbations induce a high burden to Chronic Obstructive Pulmonary Disease (COPD). We investigated the course of exacerbations in the published COSMIC study that investigated the effects of 1-year withdrawal of fluticasone after a 3-month run-in treatment period with salmeterol/fluticasone in patients with COPD.

Methods: In 373 patients, we evaluated diary cards for symptoms, Peak Expiratory Flow (PEF), and salbutamol use and assessed their course during exacerbations.

View Article and Find Full Text PDF

Cigarette smoking is the leading risk factor for lung cancer. To identify genes deregulated by smoking and to distinguish gene expression changes that are reversible and persistent following smoking cessation, we carried out genome-wide gene expression profiling on nontumor lung tissue from 853 patients with lung cancer. Gene expression levels were compared between never and current smokers, and time-dependent changes in gene expression were studied in former smokers.

View Article and Find Full Text PDF

Bronchial hyperresponsiveness (BHR) is regarded as a hallmark of asthma, yet it is also present in a considerable number of chronic obstructive pulmonary disease (COPD) patients. Epidemiological studies have shown that BHR provides complementary information to forced expiratory volume in 1 s (FEV(1)) for development and progression of COPD. We hypothesised that the severity of BHR and its longitudinal changes associate with both clinical and airway inflammation measures in COPD.

View Article and Find Full Text PDF

Pellino-1 has recently been identified as a regulator of interleukin-1 (IL-1) signaling, but its roles in regulation of responses of human cells to human pathogens are unknown. We investigated the potential roles of Pellino-1 in the airways. We show for the first time that Pellino-1 regulates responses to a human pathogen, rhinovirus minor group serotype 1B (RV-1B).

View Article and Find Full Text PDF

Asthma and COPD have a high personal, societal, and economic impact. Both diseases are characterized by airway obstruction and an inflammatory process. The inflammatory process affects the whole respiratory tract, from central to peripheral airways that are <2 mm in internal diameter, the so-called small airways.

View Article and Find Full Text PDF

It is now well recognized that treatment with anti-IgE antibodies like omalizumab is a valuable option in patients with allergic asthma who remain symptomatic despite optimal treatment. To our knowledge, treatment with omalizumab in patients with nonallergic asthma has not been reported. We present and discuss a patient with severe asthma and elevated total IgE who had a negative radioallergosorbent (RAST) test result and a negative skin-prick test result; the patient showed a dramatic improvement with this treatment strategy.

View Article and Find Full Text PDF

Importance Of The Field: Chronic obstructive pulmonary disease (COPD) is a disease characterized by chronic airflow obstruction and a progressive lung function decline. Although widely used, the efficacy of inhaled corticosteroids (ICS) in the treatment of COPD remains a matter of debate.

Areas Covered In This Review: This article reviews the evidence about the effects of inhaled corticosteroids in the treatment of COPD.

View Article and Find Full Text PDF

Adenosine is a naturally occurring purine nucleoside with a ubiquitous presence in human tissue, where it plays a key role in many biological processes such as energy generation and protein metabolism. It has been shown that adenosine induces bronchoconstriction in asthmatic and chronic obstructive pulmonary disease (COPD) patients, but not in normal airways. Four different G-protein-coupled adenosine receptors have been described, namely adenosine A(1), A(2A), A(2B) and A(3) receptors.

View Article and Find Full Text PDF

Bronchial hyperresponsiveness is present in virtually all patients with asthma and in more than two thirds of patients with chronic obstructive pulmonary disease. Thus far, methacholine and histamine are usually used to measure bronchial hyperresponsiveness. Both are direct stimuli, because they act directly on airway smooth muscle.

View Article and Find Full Text PDF