Objective: The role of angiogenesis in cancer growth has stimulated research aimed at noninvasive cancer detection by blood perfusion imaging. Recently, contrast ultrasound dispersion imaging was proposed as an alternative method for angiogenesis imaging. After the intravenous injection of an ultrasound-contrast-agent bolus, dispersion can be indirectly estimated from the local similarity between neighboring time-intensity curves (TICs) measured by ultrasound imaging.
View Article and Find Full Text PDFObjectives: The aim of this study is to improve the accuracy of dynamic contrast-enhanced ultrasound (DCE-US) for prostate cancer (PCa) localization by means of a multiparametric approach.
Materials And Methods: Thirteen different parameters related to either perfusion or dispersion were extracted pixel-by-pixel from 45 DCE-US recordings in 19 patients referred for radical prostatectomy. Multiparametric maps were retrospectively produced using a Gaussian mixture model algorithm.
Neoangiogenesis, which results in the formation of an irregular network of microvessels, plays a fundamental role in the growth of several types of cancer. Characterization of microvascular architecture has therefore gained increasing attention for cancer diagnosis, treatment monitoring and evaluation of new drugs. However, this characterization requires immunohistologic analysis of the resected tumors.
View Article and Find Full Text PDFNumerous age-related pathologies affect the prostate gland, the most menacing of which is prostate cancer (PCa). The diagnostic tools for prostate investigation are invasive, requiring biopsies when PCa is suspected. Novel dynamic contrast-enhanced ultrasound (DCE-US) imaging approaches have been proposed recently and appear promising for minimally invasive localization of PCa.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2013
The major role of angiogenesis in cancer development has driven many researchers to investigate the prospects of noninvasive cancer imaging based on assessment of microvascular perfusion. The limited results so far may be caused by the complex and contradictory effects of angiogenesis on perfusion. Alternatively, assessment of ultrasound contrast agent dispersion kinetics, resulting from features such as density and tortuosity, has shown a promising potential to characterize angiogenic effects on the microvascular structure.
View Article and Find Full Text PDFIndicator-dilution methods are widely used by many medical imaging techniques and by dye-, lithium-, and thermodilution measurements. The measured indicator dilution curves are typically fitted by a mathematical model to estimate the hemodynamic parameters of interest. This paper presents a new maximum-likelihood algorithm for parameter estimation, where indicator dilution curves are considered as the histogram of underlying transit-time distribution.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2012
The key role of angiogenesis in cancer growth has motivated extensive research with the goal of noninvasive cancer detection by blood perfusion imaging. However, the results are still limited and the diagnosis of major forms of cancer, such as prostate cancer, are currently based on systematic biopsies. The difficulty in the detection of angiogenesis partly resides in a complex relationship between angiogenesis and perfusion.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2011
Prostate cancer is the most prevalent form of cancer in western men. An accurate early localization of prostate cancer, permitting efficient use of modern focal therapies, is currently hampered by a lack of imaging methods. Several methods have aimed at detecting microvascular changes associated with prostate cancer with limited success by quantitative imaging of blood perfusion.
View Article and Find Full Text PDF