Although metacommunity theory provides many useful insights for conservation planning, the transfer of this knowledge to practice is hampered due to the difficulty of identifying metacommunities in bioregions. This study aims to identify the spatial extent of metacommunities at bioregional scales using current and historical habitat data, especially because contemporary biodiversity patterns may be a result of time-lagged responses to historical habitat configurations. Further, this estimation of the metacommunity spatial extent is based on both the habitat structure and the dispersal ability of the species.
View Article and Find Full Text PDFTraffic on roads outside of urban areas (i.e. extra-urban roads) can have major ecological and environmental impacts on agricultural, forested, and natural areas.
View Article and Find Full Text PDFPredicting the presence or absence (occurrence-state) of species in a certain area is highly important for conservation. Occurrence-state can be assessed by network models that take suitable habitat patches as nodes, connected by potential dispersal of species. To determine connections, a connectivity threshold is set at the species' maximum dispersal distance.
View Article and Find Full Text PDFHomogeneous settlement morphologies negatively impact urban vibrancy, the environment, and emotions. Mainly resulting from the separation of functions such as work and living, homogeneous settlements have often been found around large cities. However, it remains unknown whether this phenomenon occurs in settlements of any size and persisted over time.
View Article and Find Full Text PDFGenetic structure, i.e. intra-population genetic diversity and inter-population genetic differentiation, is influenced by the amount and spatial configuration of habitat.
View Article and Find Full Text PDFBiodiversity conservation requires modeling tools capable of predicting the presence or absence (i.e., occurrence-state) of species in habitat patches.
View Article and Find Full Text PDFThe fast pace of urbanisation may benefit or be detrimental to the socio-economic status of urban areas. Understanding how the configuration of urban areas influences the socio-economic status of their inhabitants is of crucial importance for urban planning. In theory, urban scaling laws and polycentric development are two well-known concepts developed to increase our understanding of urbanisation and its socio-economic effects.
View Article and Find Full Text PDFMany landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link-based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.
View Article and Find Full Text PDFMany studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes.
View Article and Find Full Text PDFFor conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland.
View Article and Find Full Text PDFMost landscape genetic studies assess the impact of landscape elements on species' dispersal and gene flow. Many of these studies perform their analysis on all possible population pairs in a study area and do not explicitly consider the effects of spatial scale and population network topology on their results. Here, we examined the effects of spatial scale and population network topology on the outcome of a landscape genetic analysis.
View Article and Find Full Text PDFThe use of procedures for the automated scoring of amplified fragment length polymorphisms (AFLP) fragments has recently increased. Corresponding software does not only automatically score the presence or absence of AFLP fragments, but also allows an evaluation of how different settings of scoring parameters influence subsequent population genetic analyses. In this study, we used the automated scoring package rawgeno to evaluate how five scoring parameters influence the number of polymorphic bins and estimates of pairwise genetic differentiation between populations (F(st)).
View Article and Find Full Text PDFLandscape genetics aims to assess the effect of the landscape on intraspecific genetic structure. To quantify interdeme landscape structure, landscape genetics primarily uses landscape resistance surfaces (RSs) and least-cost paths or straight-line transects. However, both approaches have drawbacks.
View Article and Find Full Text PDF