Alzheimers Dement
December 2024
Background: While social and medical debate about the efficacy and safety of anti-Aβ immunotherapy is ongoing, one thing that emerged is that we have little understanding of the working mechanisms of these antibodies and this lack of knowledge complicates the interpretation of the clinical results. Here, we aimed to establish if microglia are required for the efficacy of Lecanemab, one of the most promising FDA-approved disease-modifying therapy for AD (Van Dyck et al. N Engl J Med 2023).
View Article and Find Full Text PDFComplement activation is implicated in driving brain inflammation, self-cell damage and progression of injury in Alzheimer's disease and other neurodegenerative diseases. Here, we investigate the impact of brain delivery of a complement-blocking antibody on neurodegeneration in an Alzheimer's mouse model. We engineered a brain-penetrant recombinant antibody targeting the pro-inflammatory membrane attack complex.
View Article and Find Full Text PDFTwo-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models.
View Article and Find Full Text PDFThe enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs.
View Article and Find Full Text PDFThe blood-brain barrier (BBB), while being the gatekeeper of the central nervous system (CNS), is a bottleneck for the treatment of neurological diseases. Unfortunately, most of the biologicals do not reach their brain targets in sufficient quantities. The antibody targeting of receptor-mediated transcytosis (RMT) receptors is an exploited mechanism that increases brain permeability.
View Article and Find Full Text PDFClinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition.
View Article and Find Full Text PDFDNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations.
View Article and Find Full Text PDFDNA-encoded delivery and expression of antibody therapeutics presents an innovative alternative to conventional protein production and administration, including for cancer treatment. To support clinical translation, we evaluated this approach in 18 40-45 kg sheep, using a clinical-matched intramuscular electroporation (IM EP) and hyaluronidase-plasmid DNA (pDNA) coformulation setup. Two cohorts of eight sheep received either 1 or 4 mg pDNA encoding an ovine anti-cancer embryonic antigen (CEA) monoclonal antibody (mAb; OVAC).
View Article and Find Full Text PDFBackground: The blood brain barrier (BBB) limits the therapeutic perspective for central nervous system (CNS) disorders. Previously we found an anti-mouse transferrin receptor (TfR) VHH (Nb62) that was able to deliver a biologically active neuropeptide into the CNS in mice. Here, we aimed to test its potential to shuttle a therapeutic relevant cargo.
View Article and Find Full Text PDFSingle domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS.
View Article and Find Full Text PDFThe use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS.
View Article and Find Full Text PDFNeuropilin-1 (NRP-1) is a co-receptor for semaphorins and vascular endothelial growth factor (VEGF) family members that can be expressed on cancer cells and tumor-infiltrating myeloid, endothelial and lymphoid cells. It has been linked to a tumor-promoting environment upon interaction with semaphorin 3A (Sema3A). Nanobodies (Nbs) targeting NRP-1 were generated for their potential to hamper the NRP-1/Sema3A interaction and their impact on colorectal carcinoma (CRC) development was evaluated in vivo through the generation of anti-NRP-1-producing CRC cells.
View Article and Find Full Text PDFThe ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders.
View Article and Find Full Text PDFPlasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) that plays an important role in cardiovascular disorders and tumor development. The potential role of PAI-1 as a drug target has been evaluated in various animal models (e.g.
View Article and Find Full Text PDFThrombin activatable fibrinolysis inhibitor (TAFI) attenuates fibrinolysis and is considered as an attractive drug target. We generated two different antibody fragments, an antigen-binding fragment (Fab) and a single-chain variable fragment (scFv), derived from three distinct monoclonal antibodies (MAs) that inhibit the activation of TAFI by the thrombin/thrombomodulin complex (T/TM) and plasmin (MA-T1C10 and MA-T94H3) or by T/TM alone (MA-T12D11). The Fabs were obtained by papain digestion of the purified MAs, whereas the scFvs were cloned and subsequently expressed in bacteria.
View Article and Find Full Text PDFElevated plasma levels of plasminogen activator inhibitor-1 (PAI-1) have been correlated with cardiovascular diseases such as myocardial infarction and venous thrombosis. PAI-1 has also been shown to play an important role in tumor development, diabetes, and obesitas. Monoclonal antibodies MA-8H9D4 and MA-56A7C10, and their single-chain variable fragments (scFv), exhibit PAI-1-neutralizing properties.
View Article and Find Full Text PDFThe serpin plasminogen activator inhibitor-1 (PAI-1) plays an important role in the regulation of the fibrinolytic activity in blood. In plasma, PAI-1 circulates mainly in the active conformation. However, PAI-1 spontaneously converts to a latent conformation.
View Article and Find Full Text PDF