Background: Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision.
View Article and Find Full Text PDFBackground: Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide a barrier to gene flow between these parasitoid host lineages.
View Article and Find Full Text PDFLong-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.
View Article and Find Full Text PDFRNA sequencing (RNAseq) methodology has experienced a burst of technological developments in the last decade, which has opened up opportunities for studying the mechanisms of adaptation to environmental factors at both the organismal and cellular level. Selecting the most suitable experimental approach for specific research questions and model systems can, however, be a challenge and researchers in ecology and evolution are commonly faced with the choice of whether to study gene expression variation in whole bodies, specific tissues, and/or single cells. A wide range of sometimes polarised opinions exists over which approach is best.
View Article and Find Full Text PDFChromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5.
View Article and Find Full Text PDFLong-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.
View Article and Find Full Text PDFFungicides are the most sold pesticide group, with an 8% increase in sales in Europe within the last decade. While adverse short-term fungicide effects on non-target insect species have been reported, the long-term effects and their impact on fitness are unclear. As the effects may depend on both the fungicide and the genetic background of the species, we investigated the effects of the commonly used fungicide, fluazinam, on the Colorado potato beetle's life history traits, and whether the effects were dependent on a previously characterized insecticide resistance mutation (S291G in acetylcholinesterase-2 gene) in different populations.
View Article and Find Full Text PDFInterspecific gene flow (introgression) is an important source of new genetic variation, but selection against it can reinforce reproductive barriers between interbreeding species. We used an experimental approach to trace the role of chromosomal inversions and incompatibility genes in preventing introgression between two partly sympatric Drosophila virilis group species, D. flavomontana and D.
View Article and Find Full Text PDFFungicides are used to control pathogenic fungi of crop species, but they have also been shown to alter behavioral, life history and fitness related traits of nontarget insects. Here, we tested the fungicide effects on feeding behavior, survival and physiology of the nontarget pest insect, the Colorado potato beetle (CPB) (Leptinotarsa decemlineata). Feeding behavior was studied by a choice test of adult beetles, which were allowed to choose between a control and a fungicide (fluazinam) treated potato leaf.
View Article and Find Full Text PDFDrosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D.
View Article and Find Full Text PDFis an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced , sampled from forty-seven European locations between 2014 and 2016.
View Article and Find Full Text PDFBackground: Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species.
View Article and Find Full Text PDFOrganisms can plastically alter resource allocation in response to changing environmental factors. For example, in harsh conditions, organisms are expected to shift investment from reproduction toward survival; however, the factors and mechanisms that govern the magnitude of such shifts are relatively poorly studied. Here we compared the impact of cold on males and females of the highly cold-tolerant species Drosophila montana at the phenotypic and transcriptomic levels.
View Article and Find Full Text PDFGenetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster.
View Article and Find Full Text PDFThe impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species' interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances.
View Article and Find Full Text PDFThe genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species known.
View Article and Find Full Text PDFAlternative splicing, in which one gene produce multiple transcripts, may influence how adaptive genes respond to specific environments. A newly produced transcriptome of Drosophila montana shows the Gs1-like (Gs1l) gene to express multiple splice variants and to be down regulated in cold acclimated flies with increased cold tolerance. Gs1l's effect on cold tolerance was further tested by injecting cold acclimated and non-acclimated flies from two distantly located northern and southern fly populations with double stranded RNA (dsRNA) targeting Gs1l.
View Article and Find Full Text PDFTo function properly, organisms must adjust their physiology, behavior and metabolism in response to a suite of varying environmental conditions. One of the central regulators of these changes is organisms' internal circadian clock, and recent evidence has suggested that the clock genes are also important in the regulation of seasonal adjustments. In particular, thermosensitive splicing of the core clock gene in a cosmopolitan fly, , has implicated this gene to be involved in thermal adaptation.
View Article and Find Full Text PDFBackground: A wide range of insects living at higher latitudes enter diapause at the end of the warm season, which increases their chances of survival through harsh winter conditions. In this study we used RNA sequencing to identify genes involved in adult reproductive diapause in a northern fly species, Drosophila montana. Both diapausing and non-diapausing flies were reared under a critical day length and temperature, where about half of the emerging females enter diapause enabling us to eliminate the effects of varying environmental conditions on gene expression patterns of the two types of female flies.
View Article and Find Full Text PDFPhotoperiodic regulation of the circadian rhythms in insect locomotor activity has been studied in several species, but seasonal entrainment of these rhythms is still poorly understood. We have traced the entrainment of activity rhythm of northern Drosophila montana flies in a climate chamber mimicking the photoperiods and day and night temperatures that the flies encounter in northern Finland during the summer. The experiment was started by transferring freshly emerged females into the chamber in early and late summer conditions to obtain both non-diapausing and diapausing females for the studies.
View Article and Find Full Text PDFAt northern latitudes, the most robust cue for assessing the onset of winter is the shortening of day lengths. Many species use day length as a cue to increase their cold tolerance and/or enter into diapause, but little is known about changes in gene expression that occur under different day lengths. We investigate the gene expression changes associated with differences in light/dark cycles in Drosophila montana, a northerly distributed species with a strong adult photoperiodic reproductive diapause.
View Article and Find Full Text PDFMost northern insect species experience a period of developmental arrest, diapause, which enables them to survive over the winter and postpone reproduction until favorable conditions. We studied the timing of reproductive diapause and its long-term effects on the cold tolerance of Drosophila montana, D. littoralis and D.
View Article and Find Full Text PDFSeasonally changing environments at high latitudes present great challenges for the reproduction and survival of insects, and photoperiodic cues play an important role in helping them to synchronize their life cycle with prevalent and forthcoming conditions. We have mapped quantitative trait loci (QTL) responsible for the photoperiodic regulation of four life history traits, female reproductive diapause, cold tolerance, egg-to-eclosion development time and juvenile body weight in Drosophila montana strains from different latitudes in Canada and Finland. The F2 progeny of the cross was reared under a single photoperiod (LD cycle 16:8), which the flies from the Canadian population interpret as early summer and the flies from the Finnish population as late summer.
View Article and Find Full Text PDFAdaptation to seasonal changes in the northern hemisphere includes an ability to predict the forthcoming cold season from gradual changes in environmental cues early enough to prepare for the harsh winter conditions. The magnitude and speed of changes in these cues vary between the latitudes, which induces strong selection pressures for local adaptation.We studied adaptation to seasonal changes in Drosophila montana, a northern maltfly, by defining the photoperiodic conditions leading to adult reproductive diapause along a latitudinal cline in Finland and by measuring genetic differentiation and the amount of gene flow between the sampling sites with microsatellites.
View Article and Find Full Text PDFCouch potato (cpo) has previously been connected to reproductive diapause in several insect species including Drosophila melanogaster, where it has been suggested to provide a link between the insulin signalling pathway and the hormonal control of diapause. In the first part of the study we sequenced nearly 3.6 kb of this gene in a northern Drosophila species (Drosophila montana) with a robust photoperiodically determined diapause and found several types of polymorphisms along the sequenced area.
View Article and Find Full Text PDF