Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes.
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by mutations in the gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease.
View Article and Find Full Text PDFAntisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA.
View Article and Find Full Text PDFBackground: Becker muscular dystrophy (BMD) is an X-linked disorder characterized by slow, progressive muscle damage and muscle weakness. Hallmarks include fibre-size variation and replacement of skeletal muscle with fibrous and adipose tissues, after repeated cycles of regeneration. Muscle histology can detect these features, but the required biopsies are invasive, are difficult to repeat and capture only small muscle volumes.
View Article and Find Full Text PDFThe C57BL/10ScSn-Dmdmdx/J (mdx) mouse model has been used by researchers for decades as a model to study pathology of and develop therapies for Duchenne muscular dystrophy. However, the model is relatively mildly affected compared to the human situation. Recently, the D2.
View Article and Find Full Text PDFDownregulation of genes involved in the secondary pathology of Duchenne muscular dystrophy, for example, inflammation, fibrosis, and adiposis, is an interesting approach to ameliorate degeneration of muscle and replacement by fibrotic and adiposis tissue. Small interfering RNAs (siRNAs) are able to downregulate target genes, however, delivery of siRNAs to skeletal muscle still remains a challenge. We investigated delivery of fully chemically modified, cholesterol-conjugated siRNAs targeting , a nontherapeutic target that is expressed highly in muscle.
View Article and Find Full Text PDFNeuromuscular disorders (NMDs) are a heterogenous group of rare inherited diseases that compromise the function of peripheral nerves and/or muscles. With limited treatment options available, there is a growing need to design effective preclinical studies that can lead to greater success in clinical trials for novel therapeutics. Here, I discuss recent advances in modelling NMDs to improve preclinical studies as well as two articles from this issue that work in parallel to enable a deeper understanding of a particularly rare NMD, known as X-linked myotubular myopathy.
View Article and Find Full Text PDFMuscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice.
View Article and Find Full Text PDFLimb girdle muscular dystrophy type 2D (LGMD2D) is characterized by progressive weakening of muscles in the hip and shoulder girdles. It is caused by a mutation in the α-sarcoglycan gene and results in absence of α-sarcoglycan in the dystrophin-glycoprotein complex. The activin type IIB receptor is involved in the activin/myostatin pathway, with myostatin being a negative regulator of muscle growth.
View Article and Find Full Text PDFSkeletal muscle function is inferred from the spatial arrangement of muscle fiber architecture, which corresponds to myofiber molecular and metabolic features. Myofiber features are often determined using immunofluorescence on a local sampling, typically obtained from a median region. This median region is assumed to represent the entire muscle.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder caused by loss of dystrophin. This lack also affects cardiac structure and function, and cardiovascular complications are a major cause of death in DMD. Newly developed therapies partially restore dystrophin expression.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by mutations in the gene resulting in loss of functional dystrophin protein. The muscle dystrophin isoform is essential to protect muscles from contraction-induced damage. However, most dystrophin isoforms are expressed in the brain.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by reading frame disrupting mutations in the DMD gene leading to absence of functional dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach aimed at restoring the reading frame at the pre-mRNA level, allowing the production of internally truncated partly functional dystrophin proteins. AONs work in a sequence specific manner, which warrants generating humanized mouse models for preclinical tests.
View Article and Find Full Text PDFMost Duchenne muscular dystrophy (DMD) cases are caused by deletions or duplications of one or more exons that disrupt the reading frame of DMD mRNA. Restoring the reading frame allows the production of partially functional dystrophin proteins, and result in less severe symptoms. Antisense oligonucleotide mediated exon skipping has been approved for DMD, but this strategy needs repeated treatment.
View Article and Find Full Text PDFNeuromuscular disorders (NMDs) encompass a diverse group of genetic diseases characterized by loss of muscle functionality. Despite extensive efforts to develop therapies, no curative treatment exists for any of the NMDs. For multiple disorders, however, therapeutic strategies are currently being tested in clinical settings, and the first successful treatments have now entered clinical practice (e.
View Article and Find Full Text PDFMuscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis.
View Article and Find Full Text PDFSkeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.
View Article and Find Full Text PDFFor many genetic diseases, researchers are developing personalized medicine approaches. These sometimes employ custom genetic interventions such as antisense-mediated exon skipping or genome editing, aiming to restore protein function in a mutation-specific manner. Animal models can facilitate the development of personalized medicine approaches; however, given that they target human mutations and therefore human genetic sequences, scientists rely on the availability of humanized animal models.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) results, beside muscle degeneration in cognitive defects. As neuronal function is supported by astrocytes, which express dystrophin, we hypothesized that loss of dystrophin from DMD astrocytes might contribute to these cognitive defects. We generated cortical neuronal and astrocytic progeny from induced pluripotent stem cells (PSC) from six DMD subjects carrying different mutations and several unaffected PSC lines.
View Article and Find Full Text PDFLimb girdle muscular dystrophy (LGMD) types 2D and 2F are caused by mutations in the genes encoding for α- and δ-sarcoglycan, respectively, leading to progressive muscle weakness. Mouse models exist for LGMD2D (Sgca-/-) and 2F (Sgcd-/-). In a previous natural history study, we described the pathology in these mice at 34 weeks of age.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by a lack of dystrophin protein. Next to direct effects on the muscles, this has also metabolic consequences. The influence of nutrition on disease progression becomes more and more recognized.
View Article and Find Full Text PDFThe C57BL/10ScSn-/J (BL10-) mouse has been the most commonly used model for Duchenne muscular dystrophy (DMD) for decades. Their muscle dysfunction and pathology is, however, less severe than in patients with DMD, which complicates preclinical studies. Recent discoveries indicate that disease severity is exacerbated when muscular dystrophy mouse models are generated on a DBA2/J genetic background.
View Article and Find Full Text PDFDuchenne muscular dystrophy is a severe, progressive muscle-wasting disease that is caused by mutations that abolish the production of functional dystrophin protein. The exon skipping approach aims to restore the disrupted dystrophin reading frame, to allow the production of partially functional dystrophins, such as found in the less severe Becker muscular dystrophy. Exon skipping is achieved by antisense oligonucleotides (AONs).
View Article and Find Full Text PDF