The use of in-situ audiometry for hearing aid fitting is appealing due to its reduced resource and equipment requirements compared to standard approaches employing conventional audiometry alongside real-ear measures. However, its validity has been a subject of debate, as previous studies noted differences between hearing thresholds measured using conventional and in-situ audiometry. The differences were particularly notable for open-fit hearing aids, attributed to low-frequency leakage caused by the vent.
View Article and Find Full Text PDFThe influence of male and female vowel characteristics on the envelope-following responses (EFRs) is not well understood. This study explored the role of vowel characteristics on the EFR at the fundamental frequency (f0) in response to the vowel /ε/ (as in "head"). Vowel tokens were spoken by five males and five females and EFRs were measured in 25 young adults (21 females).
View Article and Find Full Text PDFObjectives: To investigate the difference in outcome measures and drivers of user preference between premium and entry-level hearing aids using group concept mapping.
Design: A single-blind crossover trial was conducted. Aided behavioural outcomes measured were loudness rating, speech/consonant recognition, and speech quality.
Direct drive hearing devices, which deliver a signal directly to the middle ear by vibrating the tympanic membrane via a lens placed in contact with the umbo, are designed to provide an extension of audible bandwidth, but there are few studies of the effects of these devices on preference, speech intelligibility, and loudness. The current study is the first to compare aided speech understanding between narrow and extended bandwidth conditions for listeners with hearing loss while fitted with a direct drive hearing aid system. The study also explored the effect of bandwidth on loudness perception and investigated subjective preference for bandwidth.
View Article and Find Full Text PDFBackground: Ecological momentary assessment (EMA) methods allow for real-time, real-world survey data collection. Studies with adults have reported EMA as a feasible and valid tool in the measurement of real-world listening experience. Research is needed to investigate the use of EMA with children who wear hearing aids.
View Article and Find Full Text PDFPurpose The aim of the study was to investigate the achieved audibility with clinically available, modern, high-end, behind-the-ear hearing aids fitted using the Desired Sensation Level v5.0 child prescription for a clinical sample of children with hearing impairment and the effect of the extended bandwidth provided by the hearing aids on several outcome measures. Method The achieved audibility was measured using the maximum audible output frequency method.
View Article and Find Full Text PDFIn contrast to the past, some current hearing aids can provide gain for frequencies above 4-5 kHz. This study assessed the effect of wider bandwidth on outcome measures using hearing aids fitted with the DSL v5.0 prescription.
View Article and Find Full Text PDFIn Part I, we investigated 40-Hz auditory steady-state response (ASSR) amplitudes for the use of objective loudness balancing across the ears for normal-hearing participants and found median across-ear ratios in ASSR amplitudes close to 1. In this part, we further investigated whether the ASSR can be used to estimate binaural loudness balance for listeners with asymmetric hearing, for whom binaural loudness balancing is of particular interest. We tested participants with asymmetric hearing and participants with bimodal hearing, who hear with electrical stimulation through a cochlear implant (CI) in one ear and with acoustical stimulation in the other ear.
View Article and Find Full Text PDFPsychophysical procedures are used to balance loudness across the ears. However, they can be difficult and require active cooperation. We investigated whether 40-Hz auditory steady-state response (ASSR) amplitudes can be used to objectively estimate the balanced loudness across the ears for a group of young, normal-hearing participants.
View Article and Find Full Text PDFBinaural loudness balancing is performed in research and clinical practice when fitting bilateral hearing devices, and is particularly important for bimodal listeners, who have a bilateral combination of a hearing aid and a cochlear implant. In this study, two psychophysical binaural loudness balancing procedures were compared. Two experiments were carried out.
View Article and Find Full Text PDFBackground: People who use a cochlear implant together with a contralateral hearing aid-so-called bimodal listeners-have poor localisation abilities and sounds are often not balanced in loudness across ears. In order to address the latter, a loudness balancing algorithm was created, which equalises the loudness growth functions for the two ears. The algorithm uses loudness models in order to continuously adjust the two signals to loudness targets.
View Article and Find Full Text PDFLoudness growth functions characterize how the loudness percept changes with current level between the threshold and most comfortable loudness level in cochlear implant users. Even though loudness growth functions are highly listener-dependent, currently default settings are used in clinical devices. This study investigated whether electrically-evoked auditory steady-state response amplitude growth functions correspond to behaviorally measured loudness growth functions.
View Article and Find Full Text PDFObjectives: Auditory steady state responses (ASSRs) are used in clinical practice for objective hearing assessments. The response is called steady state because it is assumed to be stable over time, and because it is evoked by a stimulus with a certain periodicity, which will lead to discrete frequency components that are stable in amplitude and phase over time. However, the stimuli commonly used to evoke ASSRs are also known to be able to induce loudness adaptation behaviorally.
View Article and Find Full Text PDFThe aim of this study was to find an objective estimate of individual, complete loudness growth functions based on auditory steady-state responses. Both normal-hearing and hearing-impaired listeners were involved in two behavioral loudness growth tasks and one EEG recording session. Behavioral loudness growth was measured with Absolute Magnitude Estimation and a Graphic Rating Scale with loudness categories.
View Article and Find Full Text PDF