Publications by authors named "Maaike C Kroon"

The centrifuge method is a novel, equilibrium-based, analytical procedure that allows the construction of solid-liquid phase diagrams of binary eutectic mixtures. In this paper, the development, optimization, and successful verification of the centrifuge method are described. Contrary to common dynamic analysis techniques-differential scanning calorimetry and hot-stage microscopy-the studied mixtures are equilibrated at constant temperature.

View Article and Find Full Text PDF

The solubility of CO in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing hydrophilic DESs and currently applied physical solvents and fluorinated ionic liquids.

View Article and Find Full Text PDF

The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular.

View Article and Find Full Text PDF

First-principles molecular dynamics simulations in the canonical ensemble at temperatures of 333 and 363 K and at the corresponding experimental densities are carried out to investigate the behavior of the 1:2 choline chloride/urea (reline) deep eutectic solvent and its equimolar mixture with water. Analysis of atom-atom radial and spatial distribution functions and of the H-bond network reveals the microheterogeneous structure of these complex liquid mixtures. In neat reline, the structure is governed by strong H-bonds of the trans- and cis-H atoms of urea to the chloride ion.

View Article and Find Full Text PDF

For the first time, 12 different supported deep eutectic solvent (DES) liquid membranes were prepared and characterized. These membranes consist of a polymeric support impregnated with a hydrophobic DES. First, the different membranes were characterized and their stability in water and air was determined.

View Article and Find Full Text PDF

Lignocellulosic biomass has gained extensive research interest due to its potential as a renewable resource, which has the ability to overtake oil-based resources. However, this is only possible if the fractionation of lignocellulosic biomass into its constituents, cellulose, lignin and hemicellulose, can be conducted more efficiently than is possible with the current processes. This article summarizes the currently most commonly used processes and reviews the fractionation with innovative solvents, such as ionic liquids and deep eutectic solvents.

View Article and Find Full Text PDF

Hydrophobic deep eutectic solvents were used for the first time for the removal of metal ions from non-buffered water. It was shown that the extraction occurs via an ion exchange mechanism in which all transition metal ions could be extracted with high distribution coefficients, even for high Co concentrations and low DES/water mass ratios. Maximum extraction efficiency could be reached within 5 s and regeneration was possible.

View Article and Find Full Text PDF

The low-viscous tricyanomethanide ([TCM](-))-based ionic liquids (ILs) are gaining increasing interest as attractive fluids for a variety of industrial applications. The thermophysical properties (density, viscosity, surface tension, electrical conductivity and self-diffusion coefficient) of the 1-alkyl-3-methylimidazolium tricyanomethanide [Cnmim][TCM] (n = 2, 4 and 6-8) IL series were experimentally measured over the temperature range from 288 to 363 K. Moreover, a classical force field optimized for the imidazolium-based [TCM](-) ILs was used to calculate their thermodynamic, structural and transport properties (density, surface tension, self-diffusion coefficients, viscosity) in the temperature range from 300 to 366 K.

View Article and Find Full Text PDF

Aqueous waste streams of the metallurgical industry often contain considerable concentrations of metal salts. Previous research showed that the metal chloride salts of zinc(ii), manganese(ii) and iron(iii) can be recovered by solvent extraction using a sustainable and renewable fatty acid based ionic liquid as the extractant. In this paper, the extraction mechanism of Zn(ii), Co(ii) and Ni(ii) from chloride media has been studied systematically.

View Article and Find Full Text PDF

Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), a physically based model that accounts for different molecular interactions explicitly, was applied to describe for the first time the phase behavior of deep eutectic solvents (DESs) with CO2 at temperatures from 298.15 to 318.15 K and pressures up to 2 MPa.

View Article and Find Full Text PDF

The potential of three newly discovered low transition temperature mixtures (LTTMs) is explored as sustainable substituents for the traditional carbon dioxide (CO2) absorbents. LTTMs are mixtures of two solid compounds, a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA), which form liquids upon mixing with melting points far below those of the individual compounds. In this work the HBD is lactic acid and the HBAs are tetramethylammonium chloride, tetraethylammonium chloride, and tetrabutylammonium chloride.

View Article and Find Full Text PDF

Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH3F and a large polar molecule induces defects on the clathrate hydrate framework that allow intercage guest dynamics. (13)C NMR chemical shifts of a CH3F/CH4/TBME sH hydrate and a temperature analysis of the (2)H NMR powder lineshapes of a CD3F/THF sII and CD3F/TBME sH hydrate, displayed evidence that the populations of CH4 and CH3F in the D and D' cages were in a state of rapid exchange.

View Article and Find Full Text PDF

Absorption of carbon dioxide and water in 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a gravimetric system together with in-situ Raman spectroscopy, excess molar volume (V(E)), and viscosity deviation measurements. Although CO2 absorption was marginally affected by water at low H2O molar fractions for both ILs, an increase of the H2O content resulted in a marked enhancement of both the CO2 solubility (ca. 4-fold) and diffusivity (ca.

View Article and Find Full Text PDF

A new generation of designer solvents emerged in the last decade as promising green media for multiple applications, including separation processes: the low-transition-temperature mixtures (LTTMs). They can be prepared by mixing natural high-melting-point starting materials, which form a liquid by hydrogen-bond interactions. Among them, deep-eutectic solvents (DESs) were presented as promising alternatives to conventional ionic liquids (ILs).

View Article and Find Full Text PDF

Most adsorbent materials used for olefin/paraffin separation show preferential adsorption of the olefin. Recently, the material aluminum methylphosphonate polymorph alpha (AlMePO-alpha) was found to be able to selectively adsorb the paraffin instead of the olefin, from an ethyl chloride/vinyl chloride mixture (Herdes, C.; Valente, A.

View Article and Find Full Text PDF

Accurate design of processes based on ionic liquids (ILs) requires knowledge of the phase behavior of the systems involved. In this work, the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) is used to correlate the phase behavior of binary and ternary IL mixtures. Both non-polar and polar solvents are examined, while methyl imidazolium ILs are used in all cases.

View Article and Find Full Text PDF

In this work, an equation of state (EoS) is developed to predict accurately the phase behavior of ionic liquid + CO2 systems based on the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) EoS. This EoS accounts explicitly for the dipolar interactions between ionic liquid molecules, the quadrupolar interactions between CO2 molecules, and the Lewis acid-base type of association between the ionic liquid and the CO2 molecules. Physically meaningful model pure-component parameters for ionic liquids are estimated based on literature data.

View Article and Find Full Text PDF