Metal chalcogenides have been extensively studied for thermoelectric applications. Among other metal chalcogenides, silver selenide (AgSe) is considered one of the most promising n-type semiconducting materials for thermoelectric applications due to its low band gap value, Seebeck coefficient, and superior power factor (PF) rendered at room temperature. However, one of the main drawbacks of using AgSe as a thermoelectric material on a large scale is the time-consuming physical methods to obtain them, and the need for high vacuum synthesis conditions as well as high-cost.
View Article and Find Full Text PDFNanoplastics pollution has led to a severe environmental crisis because of a large accumulation of these smaller nanoplastic particles in the aquatic environment and atmospheric conditions. Detection of these nanoplastics is crucial for food safety monitoring and human health. In this work, we report a simple and eco-friendly method to prepare a SERS-substrate-based nanoporous Ag nanoparticle (NP) film through vacuum thermal evaporation onto a vacuum-compatible deep eutectic solvent (DES) coated growth substrate for quantitative detection of nanoplastics in environmental samples.
View Article and Find Full Text PDFThe synthesis of microribbons based on the assembly of porous silicon nanoparticles (pSiNPs) in a silica matrix is reported. The formation of these structures is driven by dissolution and reprecipitation of silica derived from the NPs upon drying of an aqueous colloidal dispersion. The process generates composite films that fracture into filaments due to geometric stresses associated with drying of the film on a curved surface.
View Article and Find Full Text PDF