Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-
Unlabelled: Introduction/ Objective: Estrogen plays a protective role in vascular health due, in part, to its regulation of endothelial inflammation. However, the mechanism(s) by which estrogen negatively regulates inflammatory signaling pathways is not completely understood. MicroRNAs (miRNAs) are recognized as sensitive and selective regulators of cardiovascular function, inflammation, and disease, yet the effects of 17β-estradiol on the endothelial miRNA profile are largely unknown.
View Article and Find Full Text PDFThe aim of this study was to determine the effects of endothelin-1 (ET-1)-generated endothelial microvesicles (EMVs) on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). Human umbilical vein endothelial cells (HUVECs) were treated with ET-1 for 24 h. EMVs released into the supernatant from cells treated with ET-1 or vehicle were isolated and quantified.
View Article and Find Full Text PDFNew Findings: What is the central question of the study Is habitual short sleep associated with altered circulating levels of specific inflammation- and vascular-related microRNAs? What is the main finding and its importance? Circulating levels of miR-125a, miR-126 and miR-146a were significantly lower in the short sleep compared with the normal sleep group. Altered circulating profiles of these vascular-related microRNAs have been linked to vascular inflammation, dysfunction and increased cardiovascular disease events. Sleep-related changes in these microRNAs are consistent with, and might play a role in, the aberrant vascular physiology and increased vascular risk associated with short sleep.
View Article and Find Full Text PDFThe aims of this study were twofold. The first was to determine if human immunodeficiency virus (HIV)-1 glycoprotein (gp) 120 and transactivator of transcription (Tat) stimulate the release of endothelial microvesicles (EMVs). The second was to determine whether viral protein-induced EMVs are deleterious to endothelial cell function (inducing endothelial cell inflammation, oxidative stress, senescence and increasing apoptotic susceptibility).
View Article and Find Full Text PDFBackground Circulating microparticles have emerged as biomarkers and effectors of vascular disease. Elevated rates of cardiovascular disease are seen in HIV -1-seropositive individuals. The aims of this study were to determine: (1) if circulating microparticles are elevated in antiretroviral therapy-treated HIV -1-seropositive adults; and (2) the effects of microparticles isolated from antiretroviral therapy -treated HIV -1-seropositive adults on endothelial cell function, in vitro.
View Article and Find Full Text PDFThe aim of this study was to determine, in vitro, the effects of X4 and R5 HIV-1 gp120 and Tat on: (1) endothelial cell senescence and (2) endothelial cell microRNA (miR) expression. Endothelial cells were treated with media without and with: R5 gp120 (100 ng/mL), X4 gp120 (100 ng/mL), or Tat (500 ng/mL) for 24 h and stained for senescence-associated β-galactosidase (SA-β-gal). Cell expression of miR-34a, miR-217, and miR-146a was determined by RT-PCR.
View Article and Find Full Text PDFThe experimental aim of this study was to determine the effects of high glucose-induced endothelial microparticles (EMPs) on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3rd passage) and plated in 6-well plates at a density of 5.0 × 10 cells/condition.
View Article and Find Full Text PDF