Publications by authors named "MS Gudipati"

The creation of carbonaceous nanoparticles and their dynamics in hydrocarbon flames are still debated in environmental, combustion, and material sciences. In this study, we introduce single-pulse femtosecond laser sheet-compressed ultrafast photography (fsLS-CUP), an ultrafast imaging technique specifically designed to shed light on and capture ultrafast dynamics stemming from interactions between femtosecond lasers and nanoparticles in flames in a single-shot. fsLS-CUP enables the first-time real-time billion frames-per-second (Gfps) simultaneous two-dimensional (2D) imaging of laser-induced fluorescence (LIF) and laser-induced heating (LIH) that are originated from polycyclic aromatic hydrocarbons (PAHs) and soot particles, respectively.

View Article and Find Full Text PDF

The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission.

View Article and Find Full Text PDF

Ice is a major component of astrophysical environments - from interstellar molecular clouds through protoplanetary disks to evolved solar systems. Ice and complex organic matter coexist in these environments as well, and it is thought primordial ice brought the molecules of life to Earth four billion years ago, which could have kickstarted the origin of life on Earth. To understand the journey of ice and organics from their origins to becoming a part of evolved planetary systems, it is important to complement high spatial and spectral resolution telescopes such as JWST with laboratory experimental studies that provide deeper insight into the processes that occur in these astrophysical environments.

View Article and Find Full Text PDF

Saturn's moon Enceladus harbours a global water ocean , which lies under an ice crust and above a rocky core . Through warm cracks in the crust a cryo-volcanic plume ejects ice grains and vapour into space that contain materials originating from the ocean. Hydrothermal activity is suspected to occur deep inside the porous core, powered by tidal dissipation .

View Article and Find Full Text PDF

The benzhydryl radical is generated in high yields by flash-vacuum thermolysis of 1,1,2,2-tetraphenylethane with subsequent trapping of the product in argon or amorphous water at 3-4 K. Photoionization of the radical with various UV lights and electron sources produces the benzhydryl cation, which was identified by IR and UV-vis spectroscopy. In solid argon, the formation of the benzhydryl cation is irreversible, whereas in amorphous water-ice the electron transfer is reversible, and irradiation into the major absorption band at 443 nm of the cation leads back to the radical by electron attachment.

View Article and Find Full Text PDF

Carbon dioxide (CO) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.

View Article and Find Full Text PDF

Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith.

View Article and Find Full Text PDF

Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material.

View Article and Find Full Text PDF

Structural changes in hydrocarbon-doped water-ice during amorphous to crystalline phase conversion are investigated using polycyclic aromatic hydrocarbons (PAHs) as probes. We show that aggregation of impurity molecules occurs due to the amorphous-crystalline transition in ice, especially when they are hydrophobic molecules such as PAHs. Using ultraviolet-visible (UV-vis), Fourier-transform Infrared (FTIR), and laser-induced-fluorescence (LIF) spectroscopic techniques, we show that, although ice infrared absorption features change from a broad structureless band corresponding to amorphous ice to a sharp structured crystalline ice bands, simultaneously, sharper isolated PAH UV absorption features measured in the amorphous ice host turn broad upon ice crystallization.

View Article and Find Full Text PDF

The composition and evolution of plumes generated in a resonant infrared (IR) laser desorption of low-temperature ices is investigated via a recently developed two-step laser desorption and ionization mass spectrometry (2S-LAIMS) technique where a neutral plume is ejected by an IR laser pulse and ionized by a UV laser pulse for analysis via time-of-flight mass spectrometry. By varying the delay between the lasers, we can construct a complete time-resolved model of the ejected plume components. We found that water ices containing mixtures of polar and nonpolar analytes displayed complex mass spectral profiles that varied as the plume evolved.

View Article and Find Full Text PDF

In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D2O ices by novel infrared (IR) laser ablation of a layered non-absorbing D2O ice (spectator) containing the analytes and an ablation-active IR-absorbing H2O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices.

View Article and Find Full Text PDF

Titan, the largest moon of Saturn and similar to Earth in many aspects, has unique orange-yellow colour that comes from its atmospheric haze, whose formation and dynamics are far from well understood. Present models assume that Titan's tholin-like haze formation occurs high in atmosphere through gas-phase chemical reactions initiated by high-energy solar radiation. Here we address an important question: Is the lower atmosphere of Titan photochemically active or inert? We demonstrate that indeed tholin-like haze formation could occur on condensed aerosols throughout the atmospheric column of Titan.

View Article and Find Full Text PDF

An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics.

View Article and Find Full Text PDF

The species responsible for the broad extended red emission (ERE), discovered in 1975 and now known to be widespread throughout the Galaxy, still is unidentified. Spanning the range from approximately 540 to 900 nm, the ERE is a photoluminescent process associated with a wide variety of different interstellar environments. Over the years, a number of plausible candidates have been suggested, but subsequent observations ruled them out.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbon (PAH) molecules undergo facile ionization in cryogenic water-ices resulting in near quantitative conversions of neutral molecules to the corresponding singly charged radical cations. Here we report, for the first time, the production and stabilization of a doubly ionized, closed shell PAH in water-ice. The large PAH quaterrylene (QTR, C40H20) is readily photoionized and stabilized as QTR 2+ in a water-ice matrix at 20 K.

View Article and Find Full Text PDF

HCl-doped Xe and Kr films are irradiated with wavelength dispersed synchrotron radiation in the wavelength range from 200 to 130 nm. The growth of H, Cl, Xe2H+, XeH2, HXeCl, Kr2H+, and HKrCl as well as the decomposition of HCl are recorded by a combination of UV, VIS, and IR spectroscopy. A turnover in the formation of Xe2H+ and Kr2H+ by a predominant two-step reaction on neutral surfaces at low energies to a one-step formation on ionic surfaces is determined at 172 and 155 nm in Xe and Kr, respectively.

View Article and Find Full Text PDF

Vacuum ultraviolet (VUV) excitation (200-100 nm) and visible emission (300-650 nm) spectra of O2 imbedded in Ar matrices at different concentrations are presented. At 0.1 and 0.

View Article and Find Full Text PDF

The concentration dependence of the Paterno-Buchi photocycloaddition of the two cyclic enolethers 2,3-dihydrofuran and 2,3-dihydropyran, respectively, with aromatic as well as aliphatic aldehydes was studied. For aliphatic aldehydes, a sharp transition from low to high diastereostereoselectivity was observed, indicating a switch from singlet to triplet photocycloaddition with different selectivity controlling mechanisms.

View Article and Find Full Text PDF

The regioselectivity of photoinduced electron-transfer (PET) reactions of unsymmetrical phthalimides is controlled by the spin density distribution of the intermediate radical anions. ROHF ab initio calculations were found to be most suitable for atomic spin density analysis. Intramolecular PET reactions of quinolinic acid imides were studied with the potassium butyrate and hexanoate 1a,b and a cysteine derivative 3.

View Article and Find Full Text PDF