Publications by authors named "MS Feld"

We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves.

View Article and Find Full Text PDF

Optical transmission through complex media such as biological tissue is fundamentally limited by multiple light scattering. Precise control of the optical wavefield potentially holds the key to advancing a broad range of light-based techniques and applications for imaging or optical delivery. We present a simple and robust digital optical phase conjugation (DOPC) implementation for suppressing multiple light scattering.

View Article and Find Full Text PDF

Laser-induced fluorescence (LIF) and intrinsic fluorescence spectroscopy (IFS) have been used experimentally for diagnosing coronary atherosclerosis. In this study, we demonstrated the diagnostic superiority of IFS at 342-nm excitation (IFS(342)) versus LIF (LIF(342)) and described a protocol for head-to-head comparison of old (LIF) versus new (IFS) generations of similar diagnostic methods, labeled as "generational comparison model". IFS(342) and LIF(342) were modeled with basis spectra of media, fibrous caps, and superficial foam cells and of their correspondent chemicals (elastin, collagen, and lipoproteins).

View Article and Find Full Text PDF

Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA).

View Article and Find Full Text PDF

Electrical activity may cause observable changes in a cell's structure in the absence of exogenous reporter molecules. In this work, we report a low-coherence interferometric microscopy technique that can detect an optical signal correlated with the membrane potential changes in individual mammalian cells without exogenous labels. By measuring milliradian-scale phase shifts in the transmitted light, we can detect changes in the cells' membrane potential.

View Article and Find Full Text PDF

We implement differential interference contrast (DIC) microscopy using high-speed synthetic aperture imaging that expands the passband of coherent imaging by a factor of 2.2. For an aperture synthesized coherent image, we apply for the numerical post-processing and obtain a high-contrast DIC image for arbitrary shearing direction and bias retardation.

View Article and Find Full Text PDF

In recent years, glycated hemoglobin (HbA1c) has been increasingly accepted as a functional metric of mean blood glucose in the treatment of diabetic patients. Importantly, HbA1c provides an alternate measure of total glycemic exposure due to the representation of blood glucose throughout the day, including post-prandially. In this article, we propose and demonstrate the potential of Raman spectroscopy as a novel analytical method for quantitative detection of HbA1c, without using external dyes or reagents.

View Article and Find Full Text PDF

There continues to be a significant clinical need for rapid and reliable intraoperative margin assessment during cancer surgery. Here we describe a portable, quantitative, optical fiber probe-based, spectroscopic tissue scanner designed for intraoperative diagnostic imaging of surgical margins, which we tested in a proof of concept study in human tissue for breast cancer diagnosis. The tissue scanner combines both diffuse reflectance spectroscopy (DRS) and intrinsic fluorescence spectroscopy (IFS), and has hyperspectral imaging capability, acquiring full DRS and IFS spectra for each scanned image pixel.

View Article and Find Full Text PDF

We report a method of assessing the contribution of whole cell body and its nucleus to the clinically most relevant backward light scattering. We first construct an experimental system that can measure forward scattering and use the system to precisely extract the optical properties of a specimen such as the refractive index contrast, size distribution, and their density. A system that can simultaneously detect the backscattered light is installed to collect the backscattering for the same specimen.

View Article and Find Full Text PDF

Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection.

View Article and Find Full Text PDF

We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed chemical information from the sample, while confocal reflectance and quantitative phase microscopy show detailed morphology. Combining these intrinsic contrast imaging modalities makes it possible to obtain quantitative morphological and chemical information without exogenous staining.

View Article and Find Full Text PDF

While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship.

View Article and Find Full Text PDF

We report that disordered media made of randomly distributed nanoparticles can be used to overcome the diffraction limit of a conventional imaging system. By developing a method to extract the original image information from the multiple scattering induced by the turbid media, we dramatically increase a numerical aperture of the imaging system. As a result, the resolution is enhanced by more than 5 times over the diffraction limit, and the field of view is extended over the physical area of the camera.

View Article and Find Full Text PDF

The membranes of human red blood cells (RBCs) are a composite of a fluid lipid bilayer and a triangular network of semiflexible filaments (spectrin). We perform cellular microrheology using the dynamic membrane fluctuations of the RBCs to extract the elastic moduli of this composite membrane. By applying known osmotic stresses, we measure the changes in the elastic constants under imposed strain and thereby determine the nonlinear elastic properties of the membrane.

View Article and Find Full Text PDF

A strategy for spectroscopy tissue diagnosis using a small number of wavelengths is reported. The feasibility to accurately quantify tissue information using only 16 wavelengths is demonstrated with several wavelength reduction simulations of the existing esophageal data set. These results are an important step for the development of a miniaturized, robust and low-cost spectroscopy system.

View Article and Find Full Text PDF

Although several in vivo blood glucose measurement studies have been performed by different research groups using near-infrared (NIR) absorption and Raman spectroscopic techniques, prospective prediction has proven to be a challenging problem. An important issue in this case is the demonstration of causality of glucose concentration to the spectral information, especially as the intrinsic glucose signal is smaller compared with that of the other analytes in the blood-tissue matrix. Furthermore, time-dependent physiological processes make the relation between glucose concentration and spectral data more complex.

View Article and Find Full Text PDF

We present a full-field reflection phase microscope that combines low-coherence interferometry and off-axis digital holographic microscopy (DHM). The reflection-based DHM provides highly sensitive and a single-shot imaging of cellular dynamics while the use of low coherence source provides a depth-selective measurement. The setup uniquely uses a diffraction grating in the reference arm to generate an interference image of uniform contrast over the entire field-of-view albeit low-coherence light source.

View Article and Find Full Text PDF

Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characterization of biological tissue, especially for dysplasia and cancer detection, by determination of the tissue optical properties. A major challenge in performing routine clinical diagnosis lies in the extraction of the relevant parameters, especially at high absorption levels typically observed in cancerous tissue. Here, we present a new least-squares support vector machine (LS-SVM) based regression algorithm for rapid and accurate determination of the absorption and scattering properties.

View Article and Find Full Text PDF

Early detection and treatment of rupture-prone vulnerable atherosclerotic plaques is critical to reducing patient mortality associated with cardiovascular disease. The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides detailed biochemical information about tissue and can detect vulnerable plaque features: thin fibrous cap (TFC), necrotic core (NC), superficial foam cells (SFC), and thrombus. Ex vivo MMS spectra are collected from 12 patients that underwent carotid endarterectomy or femoral bypass surgery.

View Article and Find Full Text PDF

Tomographic phase microscopy measures the 3-D refractive index distribution of cells and tissues by combining the information from a series of angle-dependent interferometric phase images. In the original device, the frame rate was limited to 0.1 frames per second (fps) by the technique used to acquire phase images, preventing measurements of moving or rapidly changing samples.

View Article and Find Full Text PDF

We present a high-speed synthetic aperture microscopy for quantitative phase imaging of live biological cells. We measure 361 complex amplitude images of an object with various directions of illumination covering an NA of 0.8 in less than one-thirteenth of a second and then combine the images with a phase-referencing method to create a synthesized phase image.

View Article and Find Full Text PDF

Objectives: The protein components of low-density lipoprotein (LDL), oxidized LDL and proteoglycans such as versican contain tryptophan, an amino acid with characteristic fluorescence features at 308 nm excitation wavelength. We hypothesize that intrinsic fluorescence spectroscopy at 308 nm excitation wavelength IFS308, a method suitable for clinical use, can identify coronary artery lesions with superficial foam cells (SFCs) and/or proteoglycans.

Methods: We subjected 119 human coronary artery specimens to in vitro fluorescence and reflectance spectroscopy.

View Article and Find Full Text PDF

Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra.

View Article and Find Full Text PDF

Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference.

View Article and Find Full Text PDF

The physiological lag between blood and interstitial fluid (ISF) glucose is a major challenge for noninvasive glucose concentration measurements. This is a particular problem for spectroscopic techniques, which predominantly probe ISF glucose, creating inconsistencies in calibration, where blood glucose measurements are used as a reference. To overcome this problem, we present a dynamic concentration correction (DCC) scheme, based on the mass transfer of glucose between blood and ISF, to ensure consistency with the spectral measurements.

View Article and Find Full Text PDF