Publications by authors named "MR Langley"

Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.

View Article and Find Full Text PDF

Exposure to PFAS such as GenX (HFPO dimer acid) has become increasingly common due to the replacement of older generation PFAS in manufacturing processes. While neurodegenerative and developmental effects of legacy PFAS exposure have been studied in depth, there is a limited understanding specific to the effects of GenX exposure. To investigate the effects of GenX exposure, we exposed to GenX and assessed the motor behavior and performed quantitative proteomics of fly brains to identify molecular changes in the brain.

View Article and Find Full Text PDF

Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD)-depleting enzyme in the CNS. Altered NAD metabolism is linked to both high fat consumption and multiple sclerosis (MS).

View Article and Find Full Text PDF

Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls.

View Article and Find Full Text PDF

A diet high in fat and sucrose (HFHS), the so-called Western diet promotes metabolic syndrome, a significant co-morbidity for individuals with spinal cord injury (SCI). Here we demonstrate that the spinal cord of mice consuming HFHS expresses reduced insulin-like growth factor 1 (IGF-1) and its receptor and shows impaired tricarboxylic acid cycle function, reductions in PLP and increases in astrogliosis, all prior to SCI. After SCI, Western diet impaired sensorimotor and bladder recovery, increased microgliosis, exacerbated oligodendrocyte loss and reduced axon sprouting.

View Article and Find Full Text PDF

Oligodendrocytes not only produce myelin to facilitate nerve impulse conduction, but are also essential metabolic partners of the axon. Oligodendrocyte loss and myelin destruction, as occurs in multiple sclerosis (MS), leaves axons vulnerable to degeneration and permanent neurological deficits ensue. Many studies now propose that lifestyle factors such as diet may impact demyelinating conditions, including MS.

View Article and Find Full Text PDF

Myelin loss limits neurological recovery and myelin regeneration and is critical for restoration of function. We recently discovered that global knock-out of the thrombin receptor, also known as Protease Activated Receptor 1 (PAR1), accelerates myelin development. Here we demonstrate that knocking out PAR1 also promotes myelin regeneration.

View Article and Find Full Text PDF

Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified.

View Article and Find Full Text PDF

Gastrointestinal (GI) disturbances are one of the earliest symptoms affecting most patients with Parkinson's disease (PD). In many cases, these symptoms are observed years before motor impairments become apparent. Hence, the molecular and cellular underpinnings that contribute to this early GI dysfunction in PD have actively been explored using a relevant animal model.

View Article and Find Full Text PDF

Dystonia is a movement disorder characterized by involuntary and repetitive co-contractions of agonist and antagonist muscles. Dystonia 6 (DYT6) is an autosomal dominant dystonia caused by loss-of-function mutations in the zinc finger transcription factor THAP1. We have generated Thap1 knock-out mice with a view to understanding its transcriptional role.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by a profound loss of dopaminergic neurons in the substantia nigra, accompanied by chronic neuroinflammation, mitochondrial dysfunction, and widespread accumulation of α-synuclein-rich protein aggregates in the form of Lewy bodies. However, the mechanisms linking α-synuclein pathology and dopaminergic neuronal death to chronic microglial neuroinflammation have not been completely elucidated. We show that activation of the microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome is a common pathway triggered by both fibrillar α-synuclein and dopaminergic degeneration in the absence of α-synuclein aggregates.

View Article and Find Full Text PDF

Thrombin is frequently increased in the CNS after injury yet little is known regarding its effects on neural stem cells. Here we show that the subventricular zone (SVZ) of adult mice lacking the high affinity receptor for thrombin, proteinase activated receptor 1 (PAR1), show increased numbers of Sox2+ and Ki-67+ self-renewing neural stem cells (NSCs) and Olig2+ oligodendrocyte progenitors. SVZ NSCs derived from PAR1-knockout mice, or treated with a PAR1 small molecule inhibitor (SCH79797), exhibited enhanced capacity for self-renewal in vitro, including increases in neurosphere formation and BrdU incorporation.

View Article and Find Full Text PDF

Hydrogen sulfide (H S) is a highly neurotoxic gas. It is the second most common cause of gas-induced deaths. Beyond mortality, surviving victims of acute exposure may suffer long-term neurological sequelae.

View Article and Find Full Text PDF

Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse.

View Article and Find Full Text PDF

Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction, oxidative stress, and neuroinflammation are major factors in the degeneration of dopaminergic neurons in Parkinson's disease, highlighting the need for therapies targeting multiple mechanisms.
  • The study evaluated Mito-apocynin (Mito-Apo), a new compound aimed at protecting against neuronal damage, showing that it reduced neuronal loss and inflammation in both cell models and a mouse model of Parkinson's disease.
  • Mito-Apo demonstrated significant neuroprotective effects, improving behavioral performance and reducing markers of oxidative stress and inflammation in the brain, indicating its potential as a comprehensive treatment for Parkinson's disease.
View Article and Find Full Text PDF

Warfarin-based anticoagulant therapy is associated with large variability in dose response. Genetic variability in the VKORC1 and CYP2C9 genes is associated with increased warfarin sensitivity. In addition, rare coding region mutations in VKORC1 have been associated with resistance to warfarin.

View Article and Find Full Text PDF

Responses to warfarin (Coumadin) anticoagulation therapy are affected by genetic variability in both the CYP2C9 and VKORC1 genes. Validation of pharmacogenetic testing for warfarin responses includes demonstration of analytical validity of testing platforms and of the clinical validity of testing. We compared four platforms for determining the relevant single nucleotide polymorphisms (SNPs) in both CYP2C9 and VKORC1 that are associated with warfarin sensitivity (Third Wave Invader Plus, ParagonDx/Cepheid Smart Cycler, Idaho Technology LightCycler, and AutoGenomics Infiniti).

View Article and Find Full Text PDF

We evaluated the performance characteristics of three real-time reverse transcription-PCR test systems for detection and quantification of hepatitis C virus (HCV) and performed a direct comparison of the systems on the same clinical specimens. Commercial HCV panels (genotype 1b) were used to evaluate linear range, sensitivity, and precision. The Roche COBAS TaqMan HCV test for research use only (RUO) with samples processed on the MagNA Pure LC instrument (Roche RUO-MPLC) and Abbott analyte-specific reagents (ASR) with QIAGEN sample processing (Abbott ASR-Q) showed a sensitivity of 1.

View Article and Find Full Text PDF

Applications of nucleic acid testing in most areas of the clinical laboratory have increased rapidly. The advantages of nucleic acid testing include enhanced specificity and sensitivity, ease of sample procurement, and more rapid turnaround time compared to conventional laboratory testing methods. However, the cost of testing is usually higher due to the need for additional laboratory space, specialized equipment, safety apparel, and the need for highly trained personnel.

View Article and Find Full Text PDF

Accurate and rapid diagnosis of CMV disease in immunocompromised individuals remains a challenge. Quantitative polymerase chain reaction (QPCR) methods for detection of CMV in peripheral blood mononuclear cells (PBMC) have improved the positive and negative predictive value of PCR for diagnosis of CMV disease. However, detection of CMV in plasma has demonstrated a lower negative predictive value for plasma as compared with PBMC.

View Article and Find Full Text PDF

Background: Accurate and rapid diagnosis of human cytomegalovirus (HCMV) disease in solid organ transplant patients remains a challenge. We evaluated the clinical utility of a quantitative polymerase chain reaction (QPCR) method to diagnose transplant patients with HCMV disease.

Methods: A total of 429 plasma samples from 121 solid organ transplant patients were prospectively collected and evaluated for HCMV using a QPCR assay.

View Article and Find Full Text PDF