The enhancement of toroic motifs through coupling toroidal moments within molecular nanomagnets is a new, interesting and relevant approach for both fundamental research and potential quantum computation applications. We investigate a Dy8 molecular cluster and discover it has a antiferrotoroic ground state with slow magnetic relaxation. The experimental characterization of the magnetic anisotropy axes of each magnetic center and their exchange interactions represents a considerable challenge due to the non-magnetic nature of the toroidal motif.
View Article and Find Full Text PDFIgnited by the discovery of the metal-insulator transition, the behaviour of low-disorder two-dimensional (2D) electron systems is currently the focus of a great deal of attention. In the strongly interacting limit, electrons are expected to crystallize into a quantum Wigner crystal, but no definitive evidence for this effect has been obtained despite much experimental effort over the years. Here, studying the insulating state of a 2D electron system in silicon, we have found two-threshold voltage-current characteristics with a dramatic increase in noise between the two threshold voltages.
View Article and Find Full Text PDFThe energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical instability that ignites self-sustained rapid relaxation along a deflagration front that propagates at a constant subsonic speed. Using a trigger heat pulse and transverse and longitudinal magnetic fields, we investigate and control the crossover between thermally driven magnetic relaxation and magnetic deflagration in single crystals of Mn(12)-acetate.
View Article and Find Full Text PDFWith decreasing density n(s) the thermopower S of a low-disorder two-dimensional electron system in silicon is found to exhibit a sharp increase by more than an order of magnitude tending to a divergence at a finite disorder-independent density n(t) consistent with the critical form (-T/S) is proportional to (n(s)-n(t))(x) with x=1.0±0.1 (T is the temperature).
View Article and Find Full Text PDFLocal time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.
View Article and Find Full Text PDFIn magnetic fields applied parallel to the anisotropy axis, the relaxation of the magnetization of Mn(12)-acetate measured for different sweep rates collapses onto a single scaled curve. The form of the scaling implies that the dominant symmetry-breaking process responsible for tunneling is a locally varying second-order transverse anisotropy, forbidden by tetragonal symmetry in the perfect crystal, which gives rise to a broad distribution of tunnel splittings in a real crystal of Mn(12) acetate. Different forms applied to even- and odd-numbered steps provide a clear distinction between even resonances (associated with crystal anisotropy) and odd resonances (which require a transverse magnetic field).
View Article and Find Full Text PDFFor a broad range of electron densities n and temperatures T, the in-plane magnetoconductivity of the two-dimensional system of electrons in silicon MOSFETs can be scaled onto a universal curve with a single parameter H(sigma)(n,T), where H(sigma) obeys the empirical relation H(sigma) = A(n) [Delta(n)(2)+T2](1/2). The characteristic energy k(B)Delta associated with the magnetic field dependence of the conductivity decreases with decreasing density, and extrapolates to 0 at a critical density n(0), signaling the approach to a zero-temperature quantum phase transition. We show that H(sigma) = AT for densities near n(0).
View Article and Find Full Text PDFMeasurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H
For the past two decades, all two-dimensional systems of electrons were believed to be insulating in the limit of zero temperature. Recent experiments provide evidence for an unexpected transition to a conducting phase at very low electron densities. The nature of this phase is not understood and is currently the focus of intense theoretical and experimental attention.
View Article and Find Full Text PDFPhys Rev B Condens Matter
January 1995
Phys Rev B Condens Matter
May 1994
Phys Rev B Condens Matter
February 1994
Phys Rev B Condens Matter
August 1993
Phys Rev B Condens Matter
September 1992