Publications by authors named "MOREAUX J"

Our study explores the complex dynamics of the integrated stress response (ISR) axis, highlighting PIM2 kinase's critical role and its interaction with the BCL2 protein family, uncovering key mechanisms of cell survival and tumor progression. Elevated PIM2 expression, a marker of various cancers, often correlates with disease aggressiveness. Using a model of normal and malignant plasma cells, we show that inhibiting PIM2 kinase inhibits phosphorylated BAD production and activates ISR-mediated NOXA expression.

View Article and Find Full Text PDF

T-cell-based adoptive immunotherapy is a new pillar of cancer care. Tumor-redirected B cells could also contribute to therapy if their manipulation to rewire immunoglobulin (Ig) genes is mastered. We designed a single-chain Ig-encoding cassette ("scFull-Ig") that redirects antigen specificity when inserted at a single position of the IgH locus.

View Article and Find Full Text PDF

High-grade B-cell lymphomas (HGBCL) represent a heterogeneous group of very rare mature B-cell lymphomas. The 4th revised edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues (WHO-HAEM) previously defined two categories of HGBCL: the so-called double-hit (DHL) and triple-hit (THL) lymphomas, which were related to forms harboring MYC and BCL2 and/or BCL6 rearrangements, and HGBCL, NOS (not otherwise specified), corresponding to entities with intermediate characteristics between diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL), without rearrangement of the MYC and BCL2, and/or BCL6 genes. In the 5th edition of the WHO-HAEM, DHL with MYC and BCL2 rearrangements or THL were reassigned as DLBCL/HGBCL with MYC and BCL2 rearrangements (DLBCL/HGBL-MYC/BCL2), whereas the category HGBCL, NOS remains unchanged.

View Article and Find Full Text PDF

BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function.

View Article and Find Full Text PDF

presents a single nucleotide polymorphism at location 158 (V/F), which affects its binding to the fragment crystallizable (Fc) of antibodies (Abs). FcγRIIIa-158 V allotype has the highest affinity and is associated with a better clinical response to IgG1 monoclonal Abs (mAb) treatment. We compared the allele frequency of F158V polymorphism in cohorts of patients with B-cell lymphoproliferative disorders, including multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), non-Hodgkin lymphoma (NHL), and B-cell chronic leukemia (B-CLL).

View Article and Find Full Text PDF

Purpose: Given the high heterogeneity in survival for patients with multiple myeloma, it would be clinically useful to quantitatively predict the individual survival instead of attributing patients to two to four risk groups as in current models, for example, revised International Staging System (R-ISS), R2-ISS, or Mayo-2022-score.

Patients And Methods: Our aim was to develop a quantitative prediction tool for individual patient's 3-/5-year overall survival (OS) probability. We integrated established clinical and molecular risk factors into a comprehensive prognostic model and evaluated and validated its risk discrimination capabilities versus R-ISS, R2-ISS, and Mayo-2022-score.

View Article and Find Full Text PDF

Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown.

View Article and Find Full Text PDF

Although cancer initiation and progression are generally associated with the accumulation of somatic mutations, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility, suggesting that genetic mechanisms might not be the only drivers of malignant transformation. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila.

View Article and Find Full Text PDF

Plasma cells (PCs) are highly specialized cells representing the end stage of B-cell differentiation. We have shown that PC differentiation can be reproduced in vitro using elaborate culture systems. The molecular changes occurring during PC differentiation are recapitulated in this in vitro differentiation model.

View Article and Find Full Text PDF
Article Synopsis
  • Palatine tonsils act as primary defenders in our immune system against diseases we inhale or ingest, and researchers created a detailed map of the human tonsil, analyzing over 556,000 cells using various techniques.
  • They discovered 121 distinct cell types, traced their development, and outlined how different immune functions are organized within the tonsils.
  • The study's findings included identifying specific cell subtypes and regulatory factors, validating their results with age-related changes, and connecting the findings to understanding certain lymphomas, enhancing our knowledge of immune responses.
View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress.

View Article and Find Full Text PDF

Background: Multiparametric flow cytometry (MFC) is an essential diagnostic tool in B acute lymphoblastic leukemia (B ALL) to determine the B-lineage affiliation of the blast population and to define their complete immunophenotypic profile. Most MFC strategies used in routine laboratories include leukemia-associated phenotype (LAP) markers, whose expression profiles can be difficult to interpret. The aim of our study was to reach a better understanding of 7 LAP markers' landscape in B ALL: CD9, CD21, CD66c, CD58, CD81, CD123, and NG2.

View Article and Find Full Text PDF

Background: Immunotherapeutic targets in multiple myeloma (MM) have variable expression height and are partly expressed in subfractions of patients only. With increasing numbers of available compounds, strategies for appropriate choice of targets (combinations) are warranted. Simultaneously, risk assessment is advisable as patient's life expectancy varies between months and decades.

View Article and Find Full Text PDF
Article Synopsis
  • - The case involves a patient with severe thrombocytosis, where no secondary causes were identified, and although there were no signs of myelofibrosis, the patient's megakaryocytes were notably small and abnormal.
  • - Genetic analysis revealed a novel calreticulin (CALR) mutation (C105S), alongside mutations in ASXL1, U2AF1, and EZH2, all found in myeloid cells, leading to a diagnosis of myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN).
  • - Treatment with hydroxycarbamide was initiated due to high thrombosis risk, but as the patient's condition worsened, additional mutations (SETBP
View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is incurable because of the inevitable development of drug resistance. Methionine adenosyltransferase 2α (MAT2A) is the primary producer of the methyl donor S-adenosylmethionine (SAM) and several studies have documented MAT2A deregulation in different solid cancers. As the role of MAT2A in MM has not been investigated yet, the aim of this study was to clarify the potential role and underlying molecular mechanisms of MAT2A in MM, exploring new therapeutic options to overcome drug resistance.

View Article and Find Full Text PDF

Background: High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. However, despite more than a decade of use of HTS-based assays, extracting relevant functional information from whole-exome sequencing (WES) data remains challenging, especially for non-specialists lacking in-depth bioinformatic skills.

Results: To address this limitation, we developed Var∣Decrypt, a web-based tool designed to greatly facilitate WES data browsing and analysis.

View Article and Find Full Text PDF

Multiple myeloma is a hematological neoplasm derived from plasma cells invariably developing in the bone marrow (BM). The persisting clinical challenge in MM resides in its high ability to resist drugs as shown by the frequent relapses observed in patients regardless of the treatment applied. In a mouse model of MM, we identified a subpopulation of cells harboring increased resistance to current MM drugs.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance.

View Article and Find Full Text PDF

Leukocyte-associated immunoglobulin (Ig)-like receptor 1 (LAIR1, CD305) belongs to the family of immune-inhibitory receptors and is widely expressed on hematopoietic mature cells, particularly on immune cells. Four different types of ligands of LAIR1 have been described, including collagens, suggesting a potential immune-regulatory function on the extracellular matrix. By modulating cytokine secretion and cellular functions, LAIR1 displays distinct patterns of expression among NK cell and T/B lymphocyte subsets during their differentiation and cellular activation and plays a major negative immunoregulatory role.

View Article and Find Full Text PDF
Article Synopsis
  • FCR has been the standard treatment for B-chronic lymphocytic leukemia (CLL) but targeted therapies are now taking over, highlighting a need for predictive biomarkers for treatment success.
  • A study focused on identifying specific microRNAs in the blood of untreated CLL patients that could predict whether they would achieve complete remission (CR) with undetectable minimal residual disease (uMRD) post-treatment.
  • The study found 25 differentially expressed miRNAs, with a decision tree model predicting treatment outcomes based on 5 miRNAs, identifying distinct patient groups with varying probabilities of achieving CR, where high levels of certain miRNAs correlated with better outcomes.
View Article and Find Full Text PDF

While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called β-blockers as a single agent and in combination with commonly used anti-myeloma therapies.

View Article and Find Full Text PDF