Publications by authors named "MISHCHENKO A"

5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.

View Article and Find Full Text PDF
Article Synopsis
  • - Oil and gas extraction in the Arctic can release toxic compounds called polycyclic aromatic hydrocarbons (PAHs) into local waterways, impacting marine life, particularly fish like the navaga cod.
  • - A study focused on the specific PAH 3-methyl-phenanthrene (3-MP) revealed that it negatively affects the electrical excitability of navaga cod heart cells, especially at lower temperatures (9°C and 15°C) but not at 21°C.
  • - The combined effects of high temperatures and elevated potassium levels in the environment can worsen the impact of 3-MP on cardiac function, highlighting the complex interactions between temperature, potassium concentration, and PAH toxicity on fish health.
View Article and Find Full Text PDF

Aestivation and hibernation represent distinct forms of animal quiescence, characterized by physiological changes, including ion composition. Intracellular ion flows play a pivotal role in eliciting alterations in membrane potential and facilitating cellular communication, while outward K+ currents aid in the restitution and upkeep of the resting membrane potential. This study explores the relationship between inward and outward currents during aestivation in Achatina fulica snails.

View Article and Find Full Text PDF

The purpose of this inquiry is to provide a conprehensive summary and analysis of the literature concerning the pharmacological properties of components that can be extracted from , a preparation in Chinese medicine. This study also aims to explore their potential application in elaborating medicinal products for the effective prevention and treatment of such conditions as urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, pro-oxidant and inflammatory processes, etc. Several experimental studies confirmed the potential of to influence mineral metabolism, to decrease the concentration of constituents involved in the formation of urinary calculi, and to reduce mineral encrustation in the urinary tract, as well as to alleviate the damage caused by crystal structures.

View Article and Find Full Text PDF

The review provides an analysis of literature data on the persistent form of Bovine Viral diarrhea/Mucosal disease (BVD) and is focused on virus and host factors, including those related to immune response, that contribute the persistence of the virus. BVD is a cattle disease widespread throughout the world that causes significant economic damage to dairy and beef cattle. The disease is characterized by a variety of clinical signs, including damage to the digestive and respiratory organs, abortions, stillbirths and other failures of reproductive functions.

View Article and Find Full Text PDF

Post-traumatic osteoarthritis (PTOA), a disorder of the synovium, subchondral bone, and cartilage that affects the entire joint, constitutes approximately 12% of all cases of symptomatic osteoarthritis. This review summarizes the pathogenetic mechanisms that underlie the positive influence of chondroitin sulphates (CSs) on PTOA as means of preventive and therapeutic treatment. Mechanisms of PTOA development involve chondrocytes undergoing various forms of cell death (apoptosis, pyroptosis, necroptosis, ferroptosis and/or necrosis).

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness of minimally invasive technologies of lithotripsy and hydraulic antegrade lithoextraction in complex treatment of choledocholithiasis.

Material And Methods: In the main group, 74 patients with choledocholithiasis underwent complex treatment with minimally invasive lithotripsy and hydraulic antegrade lithoextraction. In the control group, 177 patients with choledocholithiasis complicated by obstructive jaundice underwent complex treatment without minimally invasive lithotripsy and hydraulic antegrade lithoextraction.

View Article and Find Full Text PDF

Van der Waals assembly enables the design of electronic states in two-dimensional (2D) materials, often by superimposing a long-wavelength periodic potential on a crystal lattice using moiré superlattices. This twistronics approach has resulted in numerous previously undescribed physics, including strong correlations and superconductivity in twisted bilayer graphene, resonant excitons, charge ordering and Wigner crystallization in transition-metal chalcogenide moiré structures and Hofstadter's butterfly spectra and Brown-Zak quantum oscillations in graphene superlattices. Moreover, twistronics has been used to modify near-surface states at the interface between van der Waals crystals.

View Article and Find Full Text PDF

The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering and hydrodynamic flow.

View Article and Find Full Text PDF

Graphite is one of the most chemically inert materials. Its elementary constituent, monolayer graphene, is generally expected to inherit most of the parent material's properties including chemical inertness. Here, we show that, unlike graphite, defect-free monolayer graphene exhibits a strong activity with respect to splitting molecular hydrogen, which is comparable to that of metallic and other known catalysts for this reaction.

View Article and Find Full Text PDF

The transition from strong (fluidlike) to nearly marginal (Floquet-type) regimes of ion-temperature-gradient (ITG) driven turbulence is studied in the stellarator Wendelstein 7-X by means of numerical simulations. Close to marginality, extended (along magnetic field lines) linearly unstable modes are dominant, even in the presence of kinetic electrons, and provide a drive that results in finite turbulent transport. A total suppression of turbulence above the linear stability threshold of the ITG modes, commonly present in tokamaks and known as the "Dimits shift," is not observed.

View Article and Find Full Text PDF

Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows.

View Article and Find Full Text PDF

Objective: The aim: To determine national trends in morbidity and mortality from diseases of the circulatory system, cerebrovascular diseases and strokes.

Patients And Methods: Materials and methods: Data from official sources of statistical information of Ukraine were used and systematic analysis and generalization of the obtained data was performed and trends in morbidity and mortality from diseases of the circulatory system, cerebrovascular diseases and strokes in Ukraine were calculated.

Results: Results: Were found tendencies to decrease of national levels of prevalence and primary morbidity in Ukraine for DCS (-16.

View Article and Find Full Text PDF

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations.

View Article and Find Full Text PDF

A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical research studies on the development of atherosclerosis - mechanobiochemical events that transform the proatherogenic mechanical stimulus of blood flow - low and low/oscillatory arterial wall shear stress in the chains of biochemical reactions in endothelial cells, leading to the expression of specific proteins that cause the progression of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining the arterial walls, have been described.

View Article and Find Full Text PDF

The third generation Buchwald precatalysts Pd(ABP)(Phos)(OMs) (also known as Phos Pd G3)) with XPhos and RuPhos were prepared in multigram scale by a modified procedure (ABP = fragment of C-deprotonated 2-aminobiphenyl, XPhos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl, RuPhos = 2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl, OMs = CHSO). The H- and P-NMR spectra of the title complexes and some impurities, measured by various 1D and 2D techniques, were analyzed in detail. The solvent-dependent isomerization of Pd(ABP)(XPhos)(OMs) was studied by NMR, and the X-ray structures of two isomers were determined.

View Article and Find Full Text PDF

We study how manifestations of strong electron-phonon interaction depend on the carrier concentration by solving the two-dimensional Holstein model for the spin-polarized fermions using an approximation free bold-line diagrammatic Monte Carlo method. We show that the strong electron-phonon interaction, obviously present at very small Fermion concentration, is masked by the Fermi blockade effects and Migdal's theorem to the extent that it manifests itself as moderate one at large carriers densities. Suppression of strong electron-phonon interaction fingerprints is in agreement with experimental observations in doped high temperature superconductors.

View Article and Find Full Text PDF

The rich functionalities of transition-metal oxides and their interfaces bear an enormous technological potential. Its realization in practical devices requires, however, a significant improvement of yet relatively low electron mobility in oxide materials. Recently, a mobility boost of about 2 orders of magnitude has been demonstrated at the spinel-perovskite γ-AlO/SrTiO interface compared to the paradigm perovskite-perovskite LaAlO/SrTiO interface.

View Article and Find Full Text PDF

In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be markedly changed by a moiré pattern induced by twist angles between different layers. This process is referred to as twistronics, where the tuning of twist angle can be realized through mechanical manipulation of 2D materials. Here, we demonstrate an experimental technique that can achieve in situ dynamical rotation and manipulation of 2D materials in van der Waals heterostructures.

View Article and Find Full Text PDF

In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 10 cm V s and the mean free path exceeding several micrometers.

View Article and Find Full Text PDF

Of the two stable forms of graphite, hexagonal and rhombohedral, the former is more common and has been studied extensively. The latter is less stable, which has so far precluded its detailed investigation, despite many theoretical predictions about the abundance of exotic interaction-induced physics. Advances in van der Waals heterostructure technology have now allowed us to make high-quality rhombohedral graphite films up to 50 graphene layers thick and study their transport properties.

View Article and Find Full Text PDF

Doped antiferromagnets host a vast array of physical properties and learning how to control them is one of the biggest challenges of condensed matter physics. [Formula: see text] (LSNO) is a classic example of such a material. At low temperatures holes introduced via substitution of La by Sr segregate into lines to form boundaries between magnetically ordered domains in the form of stripes.

View Article and Find Full Text PDF

Brain source imaging and time frequency mapping (TFM) are commonly used in magneto/electro encephalography (M/EEG) imaging. However, these methods suffer from important limitations. Source imaging is based on an ill-posed inverse problem leading to instability of source localization solutions, has a limited capacity to localize high frequency oscillations and loses its robustness for induced responses (ill-defined trigger).

View Article and Find Full Text PDF

Indirect excitons (IX) in semiconductor heterostructures are bosons, which can cool below the temperature of quantum degeneracy and can be effectively controlled by voltage and light. IX quantum Bose gases and IX devices were explored in GaAs heterostructures where an IX range of existence is limited to low temperatures due to low IX binding energies. IXs in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by large binding energies giving the opportunity for exploring excitonic quantum gases and for creating excitonic devices at high temperatures.

View Article and Find Full Text PDF

When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moiré pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moiré patterns are a viable tool for controlling the properties of 2D materials.

View Article and Find Full Text PDF