In many biology- and chemistry-related research fields and experiments the quantification of the peptide and/or protein concentration in samples are essential. Every research environment has unique requirements, e.g.
View Article and Find Full Text PDFThe microscopic origins and technological impact of 1/f type current fluctuations in Ag based, filamentary type resistive switching devices have been investigated upon downscaling toward the ultimate single atomic limit. The analysis of the low-frequency current noise spectra revealed that the main electronic noise contribution arises from the resistance fluctuations due to internal dynamical defects of Ag nanofilaments. The resulting 0.
View Article and Find Full Text PDFPrevailing models of resistive switching arising from electrochemical formation of conducting filaments across solid state ionic conductors commonly attribute the observed polarity of the voltage-biased switching to the sequence of the active and inert electrodes confining the resistive switching memory cell. Here we demonstrate stable switching behaviour in metallic Ag-Ag2S-Ag nanojunctions at room temperature exhibiting similar characteristics. Our experimental results and numerical simulations reveal that the polarity of the switchings is solely determined by the geometrical asymmetry of the electrode surfaces.
View Article and Find Full Text PDFResistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated as a function of temperature at different biasing conditions. The observed switching threshold voltages along with the ON and OFF state resistances are quantitatively understood by taking the local overheating of the junction volume and the resulting structural phase transition of the Ag2S matrix into account. Our results demonstrate that the essential characteristics of the resistive switching in Ag2S based nanojunctions can be routinely optimized by suitable sample preparation and biasing schemes.
View Article and Find Full Text PDFThe dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.
View Article and Find Full Text PDFThe nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy, we studied the nature of electron transport in the active volume of memristive junctions showing that both the ON and OFF states correspond to truly nanometer-scale, highly transparent metallic channels.
View Article and Find Full Text PDFWe study the switching characteristics of nanoscale junctions created between a tungsten tip and a silver film covered by a thin ionic conductor layer. Atomic-sized junctions show spectacular current induced switching characteristics, but both the magnitude of the switching voltage and the direction of the switching vary randomly for different junctions. In contrast, somewhat larger junctions with diameters of a few nanometres display a well defined, reproducible switching behavior attributed to the formation and destruction of nanoscale channels in the ionic conductor surface layer.
View Article and Find Full Text PDFWe demonstrate that the onset of complex spin orders in ACr2O4 spinels with magnetic and Jahn-Teller active A=Fe and Cu ions lowers the lattice symmetry. This is clearly indicated by the emergence of anisotropic lattice dynamics-i.e.
View Article and Find Full Text PDFWe have studied the bandwidth-temperature-magnetic-field phase diagram of RE0.55Sr0.45MnO3 colossal magnetoresistance manganites with ferromagnetic metal (FM) ground state.
View Article and Find Full Text PDFHigh magnetic field study of Hall resistivity in the ferromagnetic phase of (In,Mn)Sb allows one to separate its normal and anomalous components. We show that the anomalous Hall term is not proportional to the magnetization, and that it even changes sign as a function of magnetic field. We also show that the application of pressure modifies the scattering process, but does not influence the Hall effect.
View Article and Find Full Text PDFThe correlation-driven metal-insulator transition (MIT) of BaVS(3) was studied by polarized infrared spectroscopy. In the metallic state two types of electrons coexist at the Fermi energy: the quasi-1D metallic transport of A(1g) electrons is superimposed on the isotropic hopping conduction of localized E(g) electrons. The "bad-metal" character and the weak anisotropy are the consequences of the large effective mass m(eff) approximately 7 m(e) and scattering rate Gamma > or = 160 meV of the quasiparticles in the A(1g) band.
View Article and Find Full Text PDFMagnetoresistance measurements on the magnetic semiconductor (In, Mn)Sb suggest that magnetic scattering in this material is dominated by isolated Mn2+ ions located outside the ferromagnetically ordered regions when the system is below T(c). A model is proposed, based on the p-d exchange between spin-polarized charge carriers and localized Mn2+ ions, which accounts for the observed behavior both below and above the ferromagnetic phase transition. The suggested picture is further verified by high-pressure experiments, in which the degree of magnetic interaction can be varied in a controlled way.
View Article and Find Full Text PDFRecent advances in III(1-x)Mn(x)V ferromagnetic semiconductors (for example in Ga(1-x)Mn(x)As) have demonstrated that electrical control of their spin properties can be used for manipulation and detection of magnetic signals. The Mn(2+) ions in these alloys provide magnetic moments, and at the same time act as a source of valence-band holes that mediate the Mn(2+)-Mn(2+) interactions. This coupling results in the ferromagnetic phase.
View Article and Find Full Text PDFInteraction of the physically adsorbed molecular hydrogen with a breaking gold nanowire results in additional stable atomic configurations in few atom contacts and appearance of fractional peaks in the conductance histogram. This effect is explained by peculiar dynamic evolution of the hydrogen-embedded nanoconstriction due to competition between tensile and capillary forces. Dimerization within the atomic wire and hydrogen-assisted stabilization of gold dimers results in preferable atomic arrangements with conductivity close to 0.
View Article and Find Full Text PDFBoth the Hall effect and the ab(')-plane conduction anisotropy are directly addressing the unconventional normal phase properties of the Bechgaard salt (TMTSF)2PF6. We found that the dramatic reduction of the carrier density deduced from recent optical data is not reflected in an enhanced Hall resistance. The pressure and temperature dependence of the b(')-direction resistivity reveal isotropic relaxation time and do not require explanations beyond the Fermi liquid theory.
View Article and Find Full Text PDFThe phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p(cr) = 20 kbar. We find two kinds of anomalous conducting states.
View Article and Find Full Text PDFThe contribution of intracellular storage to hepatic uptake of the high clearance drug, omeprazole, was examined in the recirculating isolated perfused rat liver preparation. Following injection of [3H]omeprazole (7.5 microCi, 5 mg) into the portal vein over 1 min, livers were perfused for 5 min (N = 3) or 30 min (N = 3) and then homogenized at 4 degrees and fractionated by differential centrifugation.
View Article and Find Full Text PDFPurpose: We evaluated the toxicity and pharmacokinetics of the combination of dexrazoxane with epirubicin at dexrazoxane/epirubicin dose ratios of 5 to 9:1 in a controlled, crossover phase I study in patients with advanced malignancy.
Patients And Methods: Thirty-eight patients with a variety of malignancies were enrolled. Assessable patients received two cycles of chemotherapy consisting of epirubicin alone and in combination with dexrazoxane.
Phys Rev B Condens Matter
November 1993
We have examined the disposition of the cinchona alkaloids quinine and quinidine in the rat recirculating isolated perfused liver preparation. When administered as separate 1 mg doses, the hepatic clearances of quinine and quinidine were similar to the hepatic perfusate rate of 10 mL min-1. When 1 mg of each was administered simultaneously, mean hepatic clearance of quinine was unchanged (9.
View Article and Find Full Text PDF