Publications by authors named "MH Thoma"

Fragmentation of a suspension of micron-sized plastic microparticles and their contraction into dense globules was experimentally obtained in a gas discharge plasma, when the plasma density was deliberately and abruptly increased. The globules took up spherical shapes 0.14-1.

View Article and Find Full Text PDF

Detecting micron-sized particles is an essential task for the analysis of complex plasmas because a large part of the analysis is based on the initially detected positions of the particles. Accordingly, high accuracy in particle detection is desirable. Previous studies have shown that machine learning algorithms have made great progress and outperformed classical approaches.

View Article and Find Full Text PDF

The future of complex plasma research under microgravity condition, in particular on the International Space Station ISS, is discussed. First, the importance of this research and the benefit of microgravity investigations are summarized. Next, the key knowledge gaps, which could be topics of future microgravity research are identified.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has demonstrated promising anti-cancer effects in numerous in vitro and in vivo studies. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vasculature and microcirculation have only rarely been investigated. Here, we report the reduction of vessel density and an increase in vascular permeability and tumor cell apoptosis after CAP application.

View Article and Find Full Text PDF

Microparticle suspensions in a polarity-switched discharge plasma of the Plasmakristall-4 facility on board the International Space Station exhibit string-like order. As pointed out in [Phys. Rev.

View Article and Find Full Text PDF

The transition from old space to new space along with increasing commercialization has a major impact on space flight, in general, and on electric propulsion (EP) by ion thrusters, in particular. Ion thrusters are nowadays used as primary propulsion systems in space. This article describes how these changes related to new space affect various aspects that are important for the development of EP systems.

View Article and Find Full Text PDF

Characteristic timescales and length scales for phase transitions of real materials are in ranges where a direct visualization is unfeasible. Therefore, model systems can be useful. Here, the crystallization process of a three-dimensional complex plasma under gravity conditions is considered where the system ranges up to a large extent into the bulk plasma.

View Article and Find Full Text PDF

Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa.

View Article and Find Full Text PDF

Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly.

View Article and Find Full Text PDF

New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10-10 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena.

View Article and Find Full Text PDF

In this work, existing methods for plasma crystal analysis are investigated using artificial and simulated calibration data, which reproduce a multiphase system consisting of fcc, hcp, and bcc crystal data. Disturbances of the artificial data including Gaussian noise, stretching, and randomly missing particles are used to investigate the methods thoroughly. A popular method, called bond order parameter, has been repeatedly criticized as a structure analysis tool and will be improved with the help of a recent development.

View Article and Find Full Text PDF

We describe a series of experiments on dust particles' flows in a positive column of a horizontal dc discharge operating in laboratory and microgravity conditions. The main observation is that the particle flow velocities in laboratory experiments are systematically higher than in microgravity experiments for otherwise identical discharge conditions. The paper provides an explanation for this interesting and unexpected observation.

View Article and Find Full Text PDF

The observation of a well-developed treelike string structure supported by a gas flow in a three-dimensional dc complex plasma is presented. The dynamically stable strings, comprising 10-20 particles, were up to 5 mm long. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.

View Article and Find Full Text PDF

Dedicated experiments with strongly coupled complex plasmas in external electric fields were carried out under microgravity conditions using the PK-4 dc discharge setup. The focus was put on the comparative analysis of the formation of stringlike anisotropic structures due to reciprocal (hamiltonian) and nonreciprocal (non-hamiltonian) interactions between microparticles (induced by ac and dc fields, respectively). The experiments complemented by numerical simulations demonstrate that the responses of complex plasmas in these two regimes are drastically different.

View Article and Find Full Text PDF

An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 microm and about 30 1 microm-sized particles situated on a sphere with a radius of 190 microm and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle.

View Article and Find Full Text PDF

Steady-state clouds of microparticles were observed, levitating in a low-frequency glow discharge generated in an elongated vertical glass tube. A heated ring was attached to the tube wall outside, so that the particles, exhibiting a global convective motion, were confined vertically in the region above the location of the heater. It is shown that the particle vortices were induced by the convection of neutral gas, and the mechanism responsible for the gas convection was the thermal creep along the inhomogeneously heated tube walls.

View Article and Find Full Text PDF

We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles.

View Article and Find Full Text PDF

An experimental determination of particle charge in a bulk dc discharge plasma covering a wide range of neutral gas pressures, was recently reported [S. Ratynskaia, Phys. Rev.

View Article and Find Full Text PDF

The charge of dust particles is determined experimentally in a bulk dc discharge plasma in the pressure range 20-100 Pa. The charge is obtained by two independent methods: one based on an analysis of the particle motion in a stable particle flow and another on an analysis of the transition of the flow to an unstable regime. Molecular-dynamics simulations of the particle charging for conditions similar to those of the experiment are also performed.

View Article and Find Full Text PDF

Micron-sized particles are suspended or lifted up in a gas by thermophoresis. This allows the study of many processes occurring in strongly coupled complex plasmas at the kinetic level in a relatively stress-free environment. First results of this study are presented.

View Article and Find Full Text PDF

If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there may or may not be a mixed phase of quarks, gluons, and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, would be subjected to a thermophoretic force. It is shown that, even for small temperature gradients and short lifetimes of the mixed phase, thermophoresis would lead to a flow essentially stronger than the observed one.

View Article and Find Full Text PDF

Under very general assumptions we show that the quark dispersion relation in the quark-gluon plasma is given by two collective branches, of which one has a minimum at a nonvanishing momentum. This general feature of the quark dispersion relation leads to structures (van Hove singularities, gaps) in the low mass dilepton production rate, which might provide a unique signature for the quark-gluon plasma formation in relativistic heavy ion collisions.

View Article and Find Full Text PDF