Phys Rev Lett
February 2024
Phys Rev E Stat Nonlin Soft Matter Phys
December 2015
The consequences of small scale-length precursor plasmas on high-intensity laser-driven relativistic electrons are studied via experiments and simulations. Longer scale-length plasmas are shown to dramatically increase the efficiency of electron acceleration, yet, if too long, they reduce the coupling of these electrons into the solid target. Evidence for the existence of an optimal plasma scale-length is presented and estimated to be from 1 to 5μm.
View Article and Find Full Text PDFRefluxing of fast electrons generated by high-intensity, short-pulse lasers was investigated by measuring electron-induced Kα x rays from a buried tracer layer. Using planar foils of Au/Cu/CH, the 150-J, 0.7-ps TITAN short-pulse laser was focused on the gold foil to generate fast electrons and the 3-ns, 300-J long pulse beam irradiated on the CH side to create expanding plasma as a conducting medium.
View Article and Find Full Text PDFRadiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.
View Article and Find Full Text PDFDeuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2013
Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis.
View Article and Find Full Text PDFA novel time-resolved diagnostic is used to record the critical surface motion during picosecond-scale relativistic laser interaction with a solid target. Single-shot measurements of the specular light show a redshift decreasing with time during the interaction, corresponding to a slowing-down of the hole boring process into overdense plasma. On-shot full characterization of the laser pulse enables simulations of the experiment without any free parameters.
View Article and Find Full Text PDFA method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent.
View Article and Find Full Text PDFThe effect of increasing prepulse energy levels on the energy spectrum and coupling into forward-going electrons is evaluated in a cone-guided fast-ignition relevant geometry using cone-wire targets irradiated with a high intensity (10(20) W/cm(2)) laser pulse. Hot electron temperature and flux are inferred from Kα images and yields using hybrid particle-in-cell simulations. A two-temperature distribution of hot electrons was required to fit the full profile, with the ratio of energy in a higher energy (MeV) component increasing with a larger prepulse.
View Article and Find Full Text PDFWe report on the development and characterization of a zirconium Kα imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy.
View Article and Find Full Text PDFThe viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K_{alpha} radiation.
View Article and Find Full Text PDFWhy different colour morphs have evolved in flowering plants, and how they are maintained in populations, have long intrigued ecologists. The impact of variation in floral colour and odour (the two are frequently associated) on reproductive success remains poorly understood. In European rewardless orchids, many species occasionally show rare white-flowered individuals within populations of the common-coloured morph.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2009
The energy transport in cone-guided low- Z targets has been studied for laser intensities on target of 2.5x10(20) W cm(-2). Extreme ultraviolet (XUV) imaging and transverse optical shadowgraphy of the rear surfaces of slab and cone-slab targets show that the cone geometry strongly influences the observed transport patterns.
View Article and Find Full Text PDFA dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the approximately 1.5 to 2 keV range (6.2-8.
View Article and Find Full Text PDFThe ignition concept for electron fast ignition inertial confinement fusion requires sufficient energy be transferred from an approximately 20 ps laser pulse to the compressed fuel via approximately MeV electrons. We have assembled a suite of diagnostics to characterize such transfer, simultaneously fielding absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256 eV; spherically bent crystal imagers at 4.5 and 8 keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung, electron and proton spectrometers (along the same line of sight), and a picosecond optical probe interferometer.
View Article and Find Full Text PDFThree independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser.
View Article and Find Full Text PDFA Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.
View Article and Find Full Text PDFMeasurements of plasma temperature at the rear surface of foil targets due to heating by hot electrons, which were produced in short pulse high intensity laser matter interactions using the 150 J, 0.5 ps Titan laser, are reported. Extreme ultraviolet (XUV) imaging at 256 and 68 eV energies is used to determine spatially resolved target rear surface temperature patterns by comparing absolute intensities to radiation hydrodynamic modeling.
View Article and Find Full Text PDFExperimental evidence of plasma jets ejected from the rear side of thin solid targets irradiated by ultraintense (>10(19) W cm(-2)) laser pulses is presented. The jets, detected by transverse interferometric measurements with high spatial and temporal resolutions, show collimated expansion lasting for several hundreds of picoseconds and have substantially steep density gradients at their periphery. The role played by radiation pressure of the laser in the jet formation process is highlighted analytically and by extensive two-dimensional particle-in-cell simulations.
View Article and Find Full Text PDFThe heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V.
View Article and Find Full Text PDFA calibration of three types of GafChromic radiochromic film (HS, MD-55, and HD-810) was carried out on the Crocker Nuclear Laboratory's 76 in. cyclotron at UC Davis over doses ranging from 0.001 to 15 kGy.
View Article and Find Full Text PDFMetal foil targets were irradiated with 1 mum wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10;{19} W cm;{-2}, giving values of both Ilambda;{2} and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K_{alpha} emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with Ilambda;{2} and is independent of pulse duration.
View Article and Find Full Text PDFKalpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 microm for intensities up to 5x10(20) W cm-2. The Kalpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens, Phys.
View Article and Find Full Text PDFProtons accelerated by a picosecond laser pulse have been used to radiograph a 500 microm diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 microm and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion.
View Article and Find Full Text PDF