Publications by authors named "MH Devoret"

Article Synopsis
  • * These devices can simulate chemical structures and dynamics by mapping system Hamiltonians with bosonic operators.
  • * The review discusses recent advancements and future possibilities for using these devices in solving complex chemical issues, like molecular spectra and electronic structure calculations.
View Article and Find Full Text PDF

The density of quasiparticles typically observed in superconducting qubits exceeds the value expected in equilibrium by many orders of magnitude. Can this out-of-equilibrium quasiparticle density still possess an energy distribution in equilibrium with the phonon bath? Here, we answer this question affirmatively by measuring the thermal activation of charge-parity switching in a transmon qubit with a difference in superconducting gap on the two sides of the Josephson junction. We then demonstrate how the gap asymmetry of the device can be exploited to manipulate its parity.

View Article and Find Full Text PDF

We present the experimental finding of multiple simultaneous two-fold degeneracies in the spectrum of a Kerr oscillator subjected to a squeezing drive. This squeezing drive resulting from a three-wave mixing process, in combination with the Kerr interaction, creates an effective static two-well potential in the phase space rotating at half the frequency of the sinusoidal drive generating the squeezing. Remarkably, these degeneracies can be turned on-and-off on demand, as well as their number by simply adjusting the frequency of the squeezing drive.

View Article and Find Full Text PDF

Qubits with predominantly erasure errors present distinctive advantages for quantum error correction (QEC) and fault-tolerant quantum computing. Logical qubits based on dual-rail encoding that exploit erasure detection have been recently proposed in superconducting circuit architectures, with either coupled transmons or cavities. Here, we implement a dual-rail qubit encoded in a compact, double-post superconducting cavity.

View Article and Find Full Text PDF

The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information.

View Article and Find Full Text PDF

Transmon qubits are the predominant element in circuit-based quantum information processing, such as existing quantum computers, due to their controllability and ease of engineering implementation. But more than qubits, transmons are multilevel nonlinear oscillators that can be used to investigate fundamental physics questions. Here, they are explored as simulators of excited state quantum phase transitions (ESQPTs), which are generalizations of quantum phase transitions to excited states.

View Article and Find Full Text PDF

Electrostatic charging affects the many-body spectrum of Andreev states, yet its influence on their microwave properties has not been elucidated. We developed a circuit quantum electrodynamics probe that, in addition to transition spectroscopy, measures the microwave susceptibility of different states of a semiconductor nanowire weak link with a single dominant (spin-degenerate) Andreev level. We found that the microwave susceptibility does not exhibit a particle-hole symmetry, which we qualitatively explain as an influence of Coulomb interaction.

View Article and Find Full Text PDF

We present a recursive formula for the computation of the static effective Hamiltonian of a system under a fast-oscillating drive. Our analytical result is well-suited to symbolic calculations performed by a computer and can be implemented to arbitrary order, thus overcoming limitations of existing time-dependent perturbation methods and allowing computations that were impossible before. We also provide a simple diagrammatic tool for calculation and treat illustrative examples.

View Article and Find Full Text PDF

Bosonic modes have wide applications in various quantum technologies, such as optical photons for quantum communication, magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction. There is emerging interest in utilizing bosonic modes for quantum information processing, with circuit quantum electrodynamics (circuit QED) as one of the leading architectures. Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time.

View Article and Find Full Text PDF

Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire.

View Article and Find Full Text PDF

The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the photon-induced dephasing process of a superconducting qubit for sensing microwave radiation at the subunit photon level. Using this radiometer, we demonstrate the radiative cooling of a 1 K microwave resonator and measure its mode temperature with an uncertainty ∼0.

View Article and Find Full Text PDF

The accuracy of logical operations on quantum bits (qubits) must be improved for quantum computers to outperform classical ones in useful tasks. One method to achieve this is quantum error correction (QEC), which prevents noise in the underlying system from causing logical errors. This approach derives from the reasonable assumption that noise is local, that is, it does not act in a coordinated way on different parts of the physical system.

View Article and Find Full Text PDF

Quantum superpositions of macroscopically distinct classical states-so-called Schrödinger cat states-are a resource for quantum metrology, quantum communication and quantum computation. In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors. However, several challenges have to be overcome for this concept to become a practical way to encode and manipulate error-protected quantum information.

View Article and Find Full Text PDF

Quantum state transfer between microwave and optical frequencies is essential for connecting superconducting quantum circuits to optical systems and extending microwave quantum networks over long distances. However, establishing such a quantum interface is extremely challenging because the standard direct quantum transduction requires both high coupling efficiency and small added noise. We propose an entanglement-based scheme-generating microwave-optical entanglement and using it to transfer quantum states via quantum teleportation-which can bypass the stringent requirements in direct quantum transduction and is robust against loss errors.

View Article and Find Full Text PDF

We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this mechanism are associated with the change in the charge parity of the qubit, enabling the separation of the photon-assisted processes from other contributions to the relaxation rates. Among the signatures of the new mechanism is the same order of rates of the transitions in which a qubit loses or gains energy, which is in agreement with recent experiments.

View Article and Find Full Text PDF

In quantum physics, measurements can fundamentally yield discrete and random results. Emblematic of this feature is Bohr's 1913 proposal of quantum jumps between two discrete energy levels of an atom. Experimentally, quantum jumps were first observed in an atomic ion driven by a weak deterministic force while under strong continuous energy measurement.

View Article and Find Full Text PDF

We have realized a new interaction between superconducting qubits and a readout cavity that results in the displacement of a coherent state in the cavity, conditioned on the state of the qubit. This conditional state, when it reaches the cavity-following, phase-sensitive amplifier, matches its measured observable, namely, the in phase quadrature. In a setup where several qubits are coupled to the same readout resonator, we show it is possible to measure the state of a target qubit with minimal dephasing of the other qubits.

View Article and Find Full Text PDF

Quantum computation presents a powerful new paradigm for information processing. A robust universal quantum computer can be realized with any well controlled quantum system, but a successful platform will ultimately require the combination of highly coherent, error-correctable quantum elements with at least one entangling operation between them. Quantum information stored in a continuous-variable system-for example, a harmonic oscillator-can take advantage of hardware-efficient quantum error correction protocols that encode information in the large available Hilbert space of each element.

View Article and Find Full Text PDF

Nonequilibrium quasiparticle excitations degrade the performance of a variety of superconducting circuits. Understanding the energy distribution of these quasiparticles will yield insight into their generation mechanisms, the limitations they impose on superconducting devices, and how to efficiently mitigate quasiparticle-induced qubit decoherence. To probe this energy distribution, we systematically correlate qubit relaxation and excitation with charge-parity switches in an offset-charge-sensitive transmon qubit, and find that quasiparticle-induced excitation events are the dominant mechanism behind the residual excited-state population in our samples.

View Article and Find Full Text PDF

A quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this challenge is to utilize modularity-a strategy used frequently in nature and engineering to build complex systems robustly.

View Article and Find Full Text PDF

The modern understanding of the Josephson effect in mesosopic devices derives from the physics of Andreev bound states, fermionic modes that are localized in a superconducting weak link. Recently, Josephson junctions constructed using semiconducting nanowires have led to the realization of superconducting qubits with gate-tunable Josephson energies. We have used a microwave circuit QED architecture to detect Andreev bound states in such a gate-tunable junction based on an aluminum-proximitized indium arsenide nanowire.

View Article and Find Full Text PDF

Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet.

View Article and Find Full Text PDF

Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm must ultimately operate on error-protected logical qubits encoded in high-dimensional systems. Typically, logical qubits are encoded in multiple two-level systems, but entangling gates operating on such qubits are highly complex and have not yet been demonstrated.

View Article and Find Full Text PDF

A central requirement for any quantum error correction scheme is the ability to perform quantum nondemolition measurements of an error syndrome, corresponding to a special symmetry property of the encoding scheme. It is in particular important that such a measurement does not introduce extra error mechanisms, not included in the error model of the correction scheme. In this Letter, we ensure such a robustness by designing an interaction with a measurement device that preserves the degeneracy of the measured observable.

View Article and Find Full Text PDF