One of the most effective ways to advance the performance of quantum computers and quantum sensors is to increase the number of qubits or quantum resources in the system. A major technical challenge that must be solved to realize this goal for trapped-ion systems is scaling the delivery of optical signals to many individual ions. In this paper we demonstrate an approach employing waveguides and multi-mode interferometer splitters to optically address multiple Yb ions in a surface trap by delivering all wavelengths required for full qubit control.
View Article and Find Full Text PDFJ Electrochem Soc
January 2018
An electrodeposition process for void-free bottom-up filling of sub-millimeter scale through silicon vias (TSVs) with Cu is detailed. The 600 μm deep and nominally 125 μm diameter metallized vias were filled with Cu in less than 7 hours under potentiostatic control. The electrolyte is comprised of 1.
View Article and Find Full Text PDFA description of the design and microfabrication of arrays of micrometer-scale cylindrical ion traps is offered. Electrical characterization and initial ion trapping experiments with a massively parallel array of 5 microm internal radius (r(0)) sized cylindrical ion traps (CITs) are also described. The ion trap, materials, and design are presented and shown to be critical in achieving minimal trapping potential while maintaining minimal power consumption.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2006
We have performed detailed SIMION simulations of ion behavior in micrometer-sized cylindrical ion traps (r0 = 1 microm). Simulations examined the effects of ion and neutral temperature, the pressure and nature of cooling gas, ion mass, trap voltage and frequency, space-charge, fabrication defects, and other parameters on the ability of micrometer-sized traps to store ions. At this size scale voltage and power limitations constrain trap operation to frequencies about 1 GHz and rf amplitudes of tens of volts.
View Article and Find Full Text PDF