Glycans are oligosaccharides attached to proteins or lipids and affect their functions, such as drug efficacy, structural contribution, metabolism, immunogenicity, and molecular recognition. Conventional glycosylation analysis has relied on destructive, slow, system-sensitive methods, including enzymatic reactions, chromatography, fluorescence labeling, and mass spectrometry. Herein, we propose quantum cascade laser (QCL) infrared (IR) spectroscopy as a rapid, nondestructive method to quantify glycans and their monosaccharide composition.
View Article and Find Full Text PDFTop-down-mass spectrometry (MS)-based proteomics has emerged as a premier technology to examine proteins at the proteoform level, enabling characterization of genetic mutations, alternative splicing, and post-translational modifications. However, significant challenges that remain in top-down proteomics include the analysis of large proteoforms and the sensitivity required to examine proteoforms from minimal amounts of sample. To address these challenges, we have developed a new method termed "mall-cale erial ize xclusion hromatography" (sSEC), which incorporates a small-scale protein extraction (1 mg of tissue) and serial SEC without postfractionation sample handling, coupled with online high sensitivity capillary reversed-phase liquid chromatography tandem MS (RPLC-MS/MS) for analysis of large proteoforms.
View Article and Find Full Text PDFProtein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present challenges to study using conventional structural biology techniques. Here we develop a native nanoproteomics strategy for the enrichment and subsequent native top-down mass spectrometry (nTDMS) analysis of endogenous cardiac troponin (cTn) complex directly from human heart tissue.
View Article and Find Full Text PDFThree-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs.
View Article and Find Full Text PDFTop-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modifications (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance.
View Article and Find Full Text PDFProtein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present tremendous challenges to study using conventional structural biology techniques. Here we develop a "native nanoproteomics" strategy for the native enrichment and subsequent native top-down mass spectrometry (nTDMS) of low-abundance protein complexes.
View Article and Find Full Text PDFProtein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present tremendous challenges to study using conventional structural biology techniques. Here we develop a "native nanoproteomics" strategy for the native enrichment and subsequent native top-down mass spectrometry (nTDMS) of low-abundance protein complexes.
View Article and Find Full Text PDFMotivation: Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking.
Results: We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface.
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs.
View Article and Find Full Text PDFParents of an infant with complex congenital heart disease report caregiving challenges in the infant's first half year. We studied the issues parent dyads (mothers and fathers) were dealing with and their effect on their coparenting competencies in interactive problem-solving. The issues 31 parent dyads identified for interactive problem-solving at either or both infants aged 2 and 6 months were typed as caregiving or relational/support.
View Article and Find Full Text PDFTop-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modification (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance.
View Article and Find Full Text PDFIschemic cardiomyopathy (ICM) is a prominent form of heart failure, but the molecular mechanisms underlying ICM remain relatively understudied due to marked phenotypic heterogeneity. Alterations in post-translational modifications (PTMs) and isoform switches in sarcomeric proteins play important roles in cardiac pathophysiology. Thus, it is essential to define sarcomeric proteoform landscape to better understand ICM.
View Article and Find Full Text PDFNative top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface.
View Article and Find Full Text PDFParents' competencies in coparenting are critical to adaptive and competent caregiving of an infant with complex congenital heart disease. To date, feasible interventions to support parents in working together-coparenting-for caregiving of these infants have not been developed and systematically examined. The purpose of this feasibility study was to examine the efficacy of the participatory teaching/learning intervention, Guided Participation (GP) on parent dyads' competencies in interactive problem-solving tasks in preparation for a randomized controlled trial.
View Article and Find Full Text PDFDilated cardiomyopathy (DCM) is a major risk factor for developing heart failure and is often associated with an increased risk for life-threatening arrhythmia. Although numerous causal genes for DCM have been identified, RNA binding motif protein 20 () remains one of the few splicing factors that, when mutated or genetically ablated, leads to the development of DCM. In this study we sought to identify changes in the cardiac proteome in knockout (KO) rat hearts using global quantitative proteomics to gain insight into the molecular mechanisms precipitating the development of DCM in these rats.
View Article and Find Full Text PDFTop-down mass spectrometry (MS)-based analysis of larger proteoforms (>50 kDa) is typically challenging due to an exponential decay in the signal-to-noise ratio with increasing protein molecular weight (MW) and coelution with low-MW proteoforms. Size exclusion chromatography (SEC) fractionates proteins based on their size, separating larger proteoforms from those of smaller size in the proteome. In this protocol, we initially describe the use of SEC to fractionate high-MW proteoforms from low-MW proteoforms.
View Article and Find Full Text PDFBackground And Purpose: Parents' communication and problem-solving interaction with each other and with clinicians influences the caregiving of infants with a chronic health problem, making in-depth study of this interaction critical for design of interventions to support caregiving. This study, however, has been severely limited by lack of observational methods that can be applied in home, clinic and community settings. The Iowa Family Interaction Rating Scales provide comprehensive description of communicative and problem-solving behavior and emotion, but have only been applied to video-recorded interaction.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry, and the S protein glycosylation plays key roles in altering the viral binding/function and infectivity. However, the molecular structures and glycan heterogeneity of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis by conventional bottom-up glycoproteomic approaches. Here, we report the complete structural elucidation of intact O-glycan proteoforms through a hybrid native and denaturing top-down mass spectrometry (MS) approach employing both trapped ion mobility spectrometry (TIMS) quadrupole time-of-flight and ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR)-MS.
View Article and Find Full Text PDFGlobal bottom-up mass spectrometry (MS)-based proteomics is widely used for protein identification and quantification to achieve a comprehensive understanding of the composition, structure, and function of the proteome. However, traditional sample preparation methods are time-consuming, typically including overnight tryptic digestion, extensive sample cleanup to remove MS-incompatible surfactants, and offline sample fractionation to reduce proteome complexity prior to online liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Thus, there is a need for a fast, robust, and reproducible method for protein identification and quantification from complex proteomes.
View Article and Find Full Text PDFTop-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry and the S protein glycosylation is strongly implicated in altering viral binding/function and infectivity. However, the structures and relative abundance of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis. Here, we report the complete structural characterization of intact O-glycan proteoforms using native top-down mass spectrometry (MS).
View Article and Find Full Text PDFThree-dimensional (3D) human induced pluripotent stem cell-derived engineered cardiac tissues (hiPSC-ECTs) have emerged as a promising alternative to two-dimensional hiPSC-cardiomyocyte monolayer systems because hiPSC-ECTs are a closer representation of endogenous cardiac tissues and more faithfully reflect the relevant cardiac pathophysiology. The ability to perform functional and molecular assessments using the same hiPSC-ECT construct would allow for more reliable correlation between observed functional performance and underlying molecular events, and thus is critically needed. Herein, for the first time, we have established an integrated method that permits sequential assessment of functional properties and top-down proteomics from the same single hiPSC-ECT construct.
View Article and Find Full Text PDFExpert Rev Proteomics
October 2020
A better understanding of the underlying molecular mechanism of diseases is critical for developing more effective diagnostic tools and therapeutics toward precision medicine. However, many challenges remain to unravel the complex nature of diseases. Changes in protein isoform expression and post-translation modifications (PTMs) have gained recognition for their role in underlying disease mechanisms.
View Article and Find Full Text PDF