Publications by authors named "ME Schillaci"

Small sample sizes are often used in human and primate evolutionary research to estimate population parameters such as the mean, variance, and standard deviation, as well as statistical measures such as the coefficient of variation. Determining how well sample estimates represent population parameters is essential for establishing confidence in the inferences made using those samples. We present methods for determining a priori the probability, based on Cochran's theorem, that the sample variance and sample standard deviation are within a specified fraction of the population parameters.

View Article and Find Full Text PDF

The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential.

View Article and Find Full Text PDF

Metal tritides with low dissolution rates may have residence times in the lungs which are considerably longer than the biological half-time normally associated with tritium in body water, resulting in long-term irradiation of the lungs by low energy beta particles and bremsstrahlung X rays. Samples of hafnium tritide were placed in a lung simulant fluid to determine approximate lung dissolution rates. Hafnium hydride samples were analysed for particle size distribution with a scanning electron microscope.

View Article and Find Full Text PDF

The problem of choosing a prior distribution for the Bayesian interpretation of measurements (specifically internal dosimetry measurements) is considered using a theoretical analysis and by examining historical tritium and plutonium urine bioassay data from Los Alamos. Two models for the prior probability distribution are proposed: (1) the log-normal distribution, when there is some additional information to determine the scale of the true result, and (2) the 'alpha' distribution (a simplified variant of the gamma distribution) when there is not. These models have been incorporated into version 3 of the Bayesian internal dosimetry code in use at Los Alamos (downloadable from our web site).

View Article and Find Full Text PDF

The classical statistics approach used in health physics for the interpretation of measurements is deficient in that it does not take into account "needle in a haystack" effects, that is, correct identification of events that are rare in a population. This is often the case in health physics measurements, and the false positive fraction (the fraction of results measuring positive that are actually zero) is often very large using the prescriptions of classical statistics. Bayesian statistics provides a methodology to minimize the number of incorrect decisions (wrong calls): false positives and false negatives.

View Article and Find Full Text PDF

The effects of the radioprotector dimethyl sulfoxide (DMSO) were investigated for carbon-K (0.28 keV) and aluminum-K (1.47 keV) X rays compared with 60Co gamma rays for inactivation of mouse C3H 10T1/2 cells.

View Article and Find Full Text PDF

Although there are several theoretical predictions of the dependence of the G-value on X-ray energy, measurements have not been made below approximately equal to 7 keV. Using a ferrous sulfate solution modified by the addition of benzoic acid, we have measured the relative G-values for Alk characteristic X-rays (1.5 keV), 238Pu alpha-particles (3.

View Article and Find Full Text PDF

The results reported earlier in this series indicated that the relative biological effectiveness (RBE) of ultrasoft X rays decreases with decreasing cell thickness, approaching unity for the thinnest cells used, plateau-phase human skin fibroblasts (HSF). The possible dependence of RBE on the configuration of the cell nucleus is investigated further in this paper using two CHO cell lines that attach well and have similar intrinsic radiosensitivities to 60Co gamma rays. One of the lines forms monolayers similar to V79 cells, while the other remains more spherical during growth.

View Article and Find Full Text PDF

Ultrasoft characteristic X rays from carbon (0.28 keV) are severely attenuated as they pass through biological material, causing a nonuniform distribution of dose to cell nuclei. Complications of studying ultrasoft X rays can be minimized in this context by using cells with very thin cytoplasm and nuclei (e.

View Article and Find Full Text PDF

In the first paper of this series (Radiat. Res. 110, 396-412 (1987], using V79 cells, we reported that the relative biological effectiveness (RBE) of ultrasoft X rays was found to increase with decreasing energy, and the oxygen enhancement ratio (OER) was found to decrease with decreasing energy.

View Article and Find Full Text PDF

Ultrasoft X rays (approximately less than keV) provide a useful probe for the study of the physical parameters associated with the induction of biological lesions because the spatial scale of their energy depositions is of nanometer dimensions, comparable to that of critical structures within the cell. We report on cell-killing experiments using cultured hamster cells (V79) exposed to carbon K (0.28 keV), aluminum K (1.

View Article and Find Full Text PDF

Irradiation of humans with negative pions requires a knowledge of the absorbed dose and radiation quality outside the primary pion beam. In conjunction with early clinical trials at LAMPF, experimental data have been obtained with microdosimetric techniques and multiwire proportional counters. Theoretical calculations have been made for the neutron contribution to the dose and are consistent with these data.

View Article and Find Full Text PDF