Calculating the electronic structure of systems involving very different length scales presents a challenge. Empirical atomistic descriptions such as pseudopotentials or tight-binding models allow one to calculate the effects of atomic placements, but the computational burden increases rapidly with the size of the system, limiting the ability to treat weakly bound extended electronic states. Here we propose a new method to connect atomistic and quasi-continuous models, thus speeding up tight-binding calculations for large systems.
View Article and Find Full Text PDFIII-nitrides are considered the material of choice for light-emitting diodes (LEDs) and lasers in the visible to ultraviolet spectral range. The development is hampered by lattice and thermal mismatch between the nitride layers and the growth substrate leading to high dislocation densities. In order to overcome the issue, efforts have gone into selected area growth of nanowires (NWs), using their small footprint in the substrate to grow virtually dislocation-free material.
View Article and Find Full Text PDFIt is now possible to synthesize the wurtzite crystal phase of most III-V semiconductors in the form of nanowires. This sparks interest for fundamental research and adds extra degrees of freedom for designing novel devices. However, the understanding of many properties, such as phonon dispersion, of these wurtzite semiconductors is not yet complete, despite the extensive number of studies published.
View Article and Find Full Text PDFIt has recently become possible to grow GaAs in the wurtzite crystal phase. This ability allows interesting tests of band-structure theory. Wurtzite GaAs has two closely spaced direct conduction bands as well as three nondegenerate valence bands.
View Article and Find Full Text PDFSemiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis.
View Article and Find Full Text PDFIt has recently been found that anti-Stokes photoluminescence can be observed in degenerately n-doped indium phosphide nanowires, when exciting directly into the electron gas. This anti-Stokes mechanism has not been observed before and allows the study of carrier relaxation and recombination using standard photoluminescence techniques. It is important to know if this anti-Stokes photoluminescence also occurs in bulk semiconductors as well as its relation to carrier recombination and relaxation.
View Article and Find Full Text PDFA tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling.
View Article and Find Full Text PDFCompared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated 'hot carriers' before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.
View Article and Find Full Text PDFThe photothermoelectric (PTE) effect uses nonuniform absorption of light to produce a voltage via the Seebeck effect and is of interest for optical sensing and solar-to-electric energy conversion. However, the utility of PTE devices reported to date has been limited by the need to use a tightly focused laser spot to achieve the required, nonuniform illumination and by their dependence upon the Seebeck coefficients of the constituent materials, which exhibit limited tunability and, generally, low values. Here, we use InAs/InP heterostructure nanowires to overcome these limitations: first, we use naturally occurring absorption "hot spots" at wave mode maxima within the nanowire to achieve sharp boundaries between heated and unheated subwavelength regions of high and low absorption, allowing us to use global illumination; second, we employ carrier energy-filtering heterostructures to achieve a high Seebeck coefficient that is tunable by heterostructure design.
View Article and Find Full Text PDFThe phonon energies of AlGaP in wurtzite crystal structure are generally not known, as opposed to their zincblende counterparts, because AlGaP crystallizes in zincblende phase in bulk and thin films structures. However, in nanowires AlGaP can be grown in wurtzite crystal structure. In this work we have grown wurtzite GaP/AlGaP/GaP core-shell nanowires by use of MOVPE.
View Article and Find Full Text PDFIn this paper we have investigated the dynamics of photo-generated charge carriers in a series of aerotaxy-grown GaAs nanowires (NWs) with different levels of Zn doping. Time-resolved photo-induced luminescence and transient absorption have been employed to investigate radiative (band edge transition) and non-radiative charge recombination processes, respectively. We find that the photo-luminescence (PL) lifetime of intrinsic GaAs NWs is significantly increased after growing an AlGaAs shell over them, indicating that an AlGaAs shell can effectively passivate the surface of aerotaxy-grown GaAs NWs.
View Article and Find Full Text PDFInP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance.
View Article and Find Full Text PDFSemiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit.
View Article and Find Full Text PDFWe have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.
View Article and Find Full Text PDFIt has previously been reported that in situ formed Sn nanoparticles can successfully initiate GaAs nanowire growth with a self-assembled radial p-n junction composed of a Sn-doped n-type core and a C-doped p-type shell. In this paper, we investigate the effect of fundamental growth parameters on the morphology and crystal structure of Sn-seeded GaAs nanowires. We show that growth can be achieved in a broad temperature window by changing the TMGa precursor flow simultaneously with decreasing temperature to prevent nanowire kinking at low temperatures.
View Article and Find Full Text PDFIt is of contemporary interest to fabricate nanowires having quantum confinement and one-dimensional subband formation. This is due to a host of applications, for example, in optical devices, and in quantum optics. We have here fabricated and optically investigated narrow, down to 10 nm diameter, wurtzite GaAs nanowires which show strong quantum confinement and the formation of one-dimensional subbands.
View Article and Find Full Text PDFWe compare the optical response of wurtzite and zinc blende GaP nanowire arrays for varying geometry of the nanowires. We measure reflectance spectra of the arrays and extract from these measurements the absorption in the nanowires. To support our experimental findings and to allow for more detailed investigations of the optical response of the nanowire arrays than possible in experiments, we perform electromagnetic modeling.
View Article and Find Full Text PDFRadiative recombination in degenerately n-doped InP nanowires is studied for excitation above and below the Fermi energy of the electron gas, using photoluminescence. Laser-induced electron heating is observed, which allows absorption below the Fermi energy. We observe photon upconversion where photo-excited holes recombine with high |k| electrons.
View Article and Find Full Text PDFMeasuring lifetime of photogenerated charges in semiconductor nanowires (NW) is important for understanding light-induced processes in these materials and is relevant for their photovoltaic and photodetector applications. In this paper, we investigate the dynamics of photogenerated charge carriers in a series of as-grown InP NW with different levels of sulfur (S) doping. We observe that photoluminescence (PL) decay time as well as integrated PL intensity decreases with increasing S doping.
View Article and Find Full Text PDFPolytype nanodots are arguably the simplest nanodots than can be made, but their technological control was, up to now, challenging. We have developed a technique to produce nanowires containing exactly one polytype nanodot in GaAs with thickness control. These nanodots have been investigated by photoluminescence, which has been cross-correlated with transmission electron microscopy.
View Article and Find Full Text PDFWe report on the influence of hydrogen bromide (HBr) in situ etching on the growth of InP, GaP and GaAs nanowires. We find that HBr can be used to impede undesired radial growth during axial growth for all three material systems. The use of HBr opens a window for optimizing the growth parameters with respect to the materials' quality rather than only their morphology.
View Article and Find Full Text PDFThe ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires.
View Article and Find Full Text PDFSemiconductor-oxide heterointerfaces have several electron volts high-charge carrier potential barriers, which may enable devices utilizing quantum confinement at room temperature. While a single heterointerface is easily formed by oxide deposition on a crystalline semiconductor, as in MOS transistors, the amorphous structure of most oxides inhibits epitaxy of a second semiconductor layer. Here, we overcome this limitation by separating epitaxy from oxidation, using postgrowth oxidation of AlP segments to create axial and core-shell semiconductor-oxide heterostructured nanowires.
View Article and Find Full Text PDFCorrelated micro-photoluminescence (μPL) and cathodoluminescence (CL) measurements are reported for single core-shell InP-InAs wurtzite nanowires grown using metal-organic vapor phase epitaxy. Samples covering a radial InAs shell thickness of 1-12 ML were investigated. The effective masses for the wurtzite material were determined from the transition energy dependence of the InAs shell thickness, using a model based on linear deformation potential theory.
View Article and Find Full Text PDF