In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum.
View Article and Find Full Text PDFSaponin detoxification enzymes from pathogenic fungi are involved in the infection process of their host plants. Fusarium oxysporum f. sp lycopersici, a tomato pathogen, produces the tomatinase enzyme Tom1, which degrades alpha-tomatine to less toxic derivates.
View Article and Find Full Text PDFKnockout mutants of Fusarium oxysporum lacking the putative photoreceptor Wc1 were impaired in aerial hyphae, surface hydrophobicity, light-induced carotenogenesis, photoreactivation after UV treatment, and upregulation of photolyase gene transcription. Infection experiments with tomato plants and immunodepressed mice revealed that Wc1 is dispensable for pathogenicity on plants but required for full virulence on mammals.
View Article and Find Full Text PDFFusarium oxysporum invades its host plants through the roots and colonizes the vascular system. It produces a great variety of cell-wall degrading enzymes (CWDE), such as cellulases, xylanases, pectinases and proteases. Our group has purified and characterized an endopolygalacturonase (PG1), two exopolygalacturonases (PG2 and PG3), an endoxylanase (XYL1) and an endo pectatelyase (PL1).
View Article and Find Full Text PDFA gene, xyl4, whose predicted amino acid sequence shows significant homology with family 11 xylanases, was identified from the tomato vascular wilt fungus Fusarium oxysporum f. sp. lycopersici.
View Article and Find Full Text PDFThe tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici produces an array of pectinolytic enzymes that may contribute to penetration and colonization of the host plant.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) are a group of protein kinases that execute a wide variety of roles in cellular signal transduction pathways such as osmoregulation, cell wall biosynthesis, growth, and differentiation. A polymerase chain reaction (PCR) with degenerate primers based on conserved regions of known MAPKs was used to clone the MAPK gene PTK1 from the leaf pathogen Pyrenophora teres (anamorph Drechslera teres), the causal agent of net blotch of barley (Hordeum vulgare L.).
View Article and Find Full Text PDFTwo genes encoding putative family F xylanases from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici have been cloned and sequenced.
View Article and Find Full Text PDFA pectate lyase (PL1) from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici was previously characterized, and evidence was obtained for its production in planta.
View Article and Find Full Text PDFPG1, the major endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum, was secreted during growth on pectin by 10 of 12 isolates belonging to seven formae speciales, as determined with isoelectric focusing zymograms and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. A Southern analysis of genomic DNA and PCR performed with gene-specific primers revealed that the pg1 locus was highly conserved structurally in most isolates. Two PG1-deficient isolates were identified; one lacked the encoding gene, and the other carried a pg1 allele disrupted by a 3.
View Article and Find Full Text PDF