Publications by authors named "MC Passeggi"

The use of biopolymers as an alternative to petroleum-based polymers offers a sustainable solution with benefits such as biodegradability and unique functionalities. In this study, starch/zein bioparticles (BPs) obtained by nanoprecipitation were employed to synthesize acrylic polymer/biopolymer waterborne nanoparticles with excellent film formation capability. These hybrid nanoparticle dispersions were obtained through a semibatch emulsion polymerization using the previously synthesized BPs as seed and variable monomeric formulations composed of butyl acrylate and methyl methacrylate.

View Article and Find Full Text PDF

In this work, we carried out an experimental and theoretical study on the formation of self-assembled monolayers of L-cysteine molecules on gold surfaces in the presence of methanol as a solvent. We report for the first time L-cysteine and methanol ordered structures forming a mixed self-assembled mono-layer on Au(100) surfaces under ambient conditions. Finger-like ordered structures with a relative height of 0.

View Article and Find Full Text PDF

Pyrazole derivatives are key in crystal engineering and liquid crystal fields and thrive in agriculture, pharmaceutical, or biomedicine industries. Such versatility relies in their supramolecular bond adaptability when forming hydrogen bonds or metal-pyrazole complexes. Interestingly, the precise structure of pyrazole-based macrocycles forming widespread porous structures is still unsolved.

View Article and Find Full Text PDF

The design of ultratough hydrogels has recently emerged as a topic of great interest in the scientific community due to their ability to mimic the features of biological tissues. An outstanding strategy for preparing these materials relies on reversible and dynamic cross-links within the hydrogel matrix. In this work, inspired by the composition of ascidians' tunic, stretchable supramolecular hydrogels combining poly(vinyl alcohol), green tea-derived gallic acid, and rigid tannic acid-coated cellulose nanocrystals (TA@CNC) were designed.

View Article and Find Full Text PDF
Article Synopsis
  • Microplastics (MPs) are emerging pollutants with significant effects on aquatic life, particularly on tadpoles, which have been less studied in this context.
  • The study investigated the ingestion of polyethylene MPs by Scinax squalirostris tadpoles and analyzed enzyme activities (carboxylesterase and alkaline phosphatase) after exposure to MPs and a control group.
  • Results showed that MPs were present in tadpole intestines, altered enzyme activities significantly, indicating potential health risks for aquatic vertebrates and emphasizing the need for comprehensive assessments of environmental contaminants.
View Article and Find Full Text PDF

Using first-principles calculations based on density functional theory (DFT), we study the aluminum fluoride (AlF) intercalation in graphite as a new possibility to use this molecule in rechargeable batteries, and understand its role when used as a component of the solvent. We discuss the most stable configuration of the AlF molecule in graphite for stage-2 and stage-1 and the diffusion study of the molecule, the migration pathways and the energy barriers. Our results show an average voltage of 3.

View Article and Find Full Text PDF

Atomistic molecular dynamic simulations were performed to study the structure of isolated VBT-VBA (vinylbenzylthymine-vinylbenzyltriethylammonium chloride) copolymer chains in water at different monomeric species ratios (1:1 and 1:4). The geometric parameters of the structure that the copolymers form in equilibrium together with the basic interactions that stabilize them were determined. Atomic force microscopy (AFM) measurements of dried diluted concentrations of the two copolymers onto highly oriented pyrolytic graphite (HOPG) substrates were carried out to study their aggregation arrangement.

View Article and Find Full Text PDF

We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice.

View Article and Find Full Text PDF

Surface topography and work function maps were simultaneously obtained for carbon surfaces modified by a dendritic molecule: 3,5-Bis (3,5-dinitrobenzoylamino) benzoic acid. The dendrons were spontaneously assembled onto highly ordered pyrolytic graphite samples, exhibiting an increase in the surface potential. This fact is consistent with the incorporation of an electron-acceptor functional group that remains electroactive on the surface.

View Article and Find Full Text PDF

We report an EPR study at X- and Q-bands of polycrystalline and single crystal samples of the mixed copper(II) complex with L-glutamic acid (glu) and 1,10-phenantroline (phen), [Cu(glu)(phen)(H(2)O)](+) NO(3)(-)·2(H(2)O). The polycrystalline sample spectrum at Q-band showed well resolved g(∥ )and g(⊥) features and partially solved hyperfine structure at g(∥), typical for weakly exchange coupled systems. This is confirmed from the angular variation of the EPR spectra which shows for certain magnetic field orientations a partially solved hyperfine structure characteristic of weak exchange, whereas a single Lorentzian line corresponding to strong exchange is observed for others.

View Article and Find Full Text PDF

We report powder and single crystal EPR measurements of [Cu(tda)(phen)](2)·H(2)tda (tda = thiodiacetate, phen = phenanthroline) at 9.7 GHz. This compound consists of centrosymmetric copper(II) ion dimers, weakly ferromagnetically exchange-coupled (J = +3.

View Article and Find Full Text PDF

Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas.

View Article and Find Full Text PDF

We grow epitaxial graphene monolayers on Ru(0001) that cover uniformly the substrate over lateral distances larger than several microns. The weakly coupled graphene monolayer is periodically rippled and it shows charge inhomogeneities in the charge distribution. Real space measurements by scanning tunneling spectroscopy reveal the existence of electron pockets at the higher parts of the ripples, as predicted by a simple theoretical model.

View Article and Find Full Text PDF

The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.

View Article and Find Full Text PDF

By means of variable-temperature scanning tunneling microscopy and spectroscopy we studied the thickness-dependent roughening temperature of Pb films grown on Cu(111), whose electronic structure and total energy is controlled by quantum well states created by the spatial confinement of electrons. Large scale STM images are employed to quantify the layer population, i.e.

View Article and Find Full Text PDF

We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D.

View Article and Find Full Text PDF

We report electron paramagnetic resonance (EPR) experiments in frozen solutions of unreduced and reduced photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides R-26 in which Fe2+ has been chemically replaced by the isotope 65Cu2+. Samples in which the primary quinone acceptor QA is unreduced (Cu2+QA:RCs) give a powder EPR spectrum typical for Cu2+ having axial symmetry, corresponding to a d(x2 - y2) ground state orbital, with g values g parallel = 2.314 +/- 0.

View Article and Find Full Text PDF