Publications by authors named "MC Jarvis"

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H.

View Article and Find Full Text PDF

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors.

View Article and Find Full Text PDF

Environmental influences and differential growth subject plants to mechanical forces. Forces on the whole plant resolve into tensile forces on its primary cell walls and both tensile and compression forces on the secondary cell wall layers of woody tissues. Forces on cell walls are further resolved into forces on cellulose microfibrils and the noncellulosic polymers between them.

View Article and Find Full Text PDF

Aims: Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer.

View Article and Find Full Text PDF

Background And Purpose: Virus-containing aerosol droplets emitted by breathing, speech or coughing dry rapidly to equilibrium with ambient relative humidity (RH), increasing in solute concentration with effects on virus survival and decreasing in diameter with effects on sedimentation and respiratory uptake. The aim of this paper is to model the effect of ionic and macromolecular solutes on droplet drying and solute concentration.

Methods: Deliquescence-efflorescence concepts and Kohler theory were used to simulate the evolution of solute concentrations and water activity in respiratory droplets, starting from efflorescence data on mixed NaCl/KCl aerosols and osmotic pressure data on respiratory macromolecules.

View Article and Find Full Text PDF

Conifer wood is an exceptionally stiff and strong material when its cellulose microfibrils are well aligned. However, it is not well understood how the polymer components cellulose, hemicelluloses and lignin co-operate to resist tensile stress in wood. From X-ray scattering, neutron scattering and spectroscopic data, collected under tension and processed by novel methods, the ordered, disordered and hemicellulose-coated cellulose components comprising each microfibril were shown to stretch together and demonstrated concerted, viscous stress relaxation facilitated by water.

View Article and Find Full Text PDF

Evidence has emerged that SARS-CoV-2, the coronavirus that causes COVID-19, can be transmitted airborne in aerosol particles as well as in larger droplets or by surface deposits. This minireview outlines the underlying aerosol science, making links to aerosol research in other disciplines. SARS-CoV-2 is emitted in aerosol form during normal breathing by both asymptomatic and symptomatic people, remaining viable with a half-life of up to about an hour during which air movement can carry it considerable distances, although it simultaneously disperses.

View Article and Find Full Text PDF

APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous gene.

View Article and Find Full Text PDF

The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis.

View Article and Find Full Text PDF
Article Synopsis
  • The DNA cytosine deaminase APOBEC3B (A3B) is linked to increased mutation rates in various cancers, particularly head and neck cancers, by causing specific base substitutions.
  • In HPV-positive cancers, A3B overexpression is driven by viral oncoproteins, while the mechanisms in HPV-negative cancers remain less understood.
  • The study shows that A3B levels gradually increase in HPV-negative head/neck cancers, indicating it may serve as a marker for more advanced dysplasia and cancer progression.
View Article and Find Full Text PDF

Purpose: Clear cell ovarian carcinoma (CCOC) is an aggressive disease that often demonstrates resistance to standard chemotherapies. Approximately 25% of patients with CCOC show a strong APOBEC mutation signature. Here, we determine which APOBEC3 enzymes are expressed in CCOC, establish clinical correlates, and identify a new biomarker for detection and intervention.

View Article and Find Full Text PDF

HIV-1 Vif hijacks a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes and PP2A phosphatase regulators (PPP2R5A-E). APOBEC3 counteraction is essential for viral pathogenesis. However, Vif also functions through an unknown mechanism to induce G2 cell cycle arrest.

View Article and Find Full Text PDF

Human cells express up to 9 active DNA cytosine deaminases with functions in adaptive and innate immunity. Many cancers manifest an APOBEC mutation signature and APOBEC3B (A3B) is likely the main enzyme responsible. Although significant numbers of APOBEC signature mutations accumulate in tumor genomes, the majority of APOBEC-catalyzed uracil lesions are probably counteracted in an error-free manner by the uracil base excision repair pathway.

View Article and Find Full Text PDF

An integral part of the antiviral innate immune response is the APOBEC3 family of single-stranded DNA cytosine deaminases, which inhibits virus replication through deamination-dependent and -independent activities. Viruses have evolved mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellular APOBEC3B (A3B).

View Article and Find Full Text PDF

HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully.

View Article and Find Full Text PDF

Rotavirus C (RVC) causes enteric disease in multiple species, including humans, swine, bovines, and canines. To date, the evolutionary relationships of RVC populations circulating in different host species are poorly understood, owing to the low availability of genetic sequence data. To address this gap, we sequenced 45 RVC complete genomes from swine samples collected in the United States and Mexico.

View Article and Find Full Text PDF

APOBEC3B is a single-stranded DNA cytosine deaminase with beneficial innate antiviral functions. However, misregulated APOBEC3B can also be detrimental by inflicting APOBEC signature C-to-T and C-to-G mutations in genomic DNA of multiple cancer types. Polyomavirus and papillomavirus oncoproteins induce APOBEC3B overexpression, perhaps to their own benefit, but little is known about the cellular mechanisms hijacked by these viruses to do so.

View Article and Find Full Text PDF

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like (APOBEC) family of single-stranded DNA (ssDNA) cytosine deaminases provides innate immunity against virus and transposon replication. A well-studied mechanism is APOBEC3G restriction of human immunodeficiency virus type 1, which is counteracted by a virus-encoded degradation mechanism. Accordingly, most work has focused on retroviruses with obligate ssDNA replication intermediates and it is unclear whether large double-stranded DNA (dsDNA) viruses may be similarly susceptible to restriction.

View Article and Find Full Text PDF

Background: Multiple endogenous and exogenous sources of DNA damage contribute to the overall mutation burden in cancer, with distinct and overlapping combinations contributing to each cancer type. Many mutation sources result in characteristic mutation signatures, which can be deduced from tumor genomic DNA sequences. Examples include spontaneous hydrolytic deamination of methyl-cytosine bases in CG motifs (AGEING signature) and C-to-T and C-to-G mutations in 5'-TC(A/T) motifs (APOBEC signature).

View Article and Find Full Text PDF

There is an emerging consensus that higher plants synthesize cellulose microfibrils that initially comprise 18 chains. However, the mean number of chains per microfibril is usually greater than 18, sometimes much greater. Microfibrils from woody tissues of conifers, grasses and dicotyledonous plants, and from organs like cotton hairs, all differ in detailed structure and mean diameter.

View Article and Find Full Text PDF

Surveillance of Rotavirus A (RVA) infections in North America swine populations are limited and not performed over a significant time period to properly assess the diversity of RVA strains in swine. The VP7 (G) and VP4 (P) genes of 32 Canadian RVA strains, circulating between 2009 and 2015 were sequenced, identifying the G3P[13], G5P[7], G9P[7], G9[13], and G9[19] genotype combinations. The Canadian RVA strains were compared to the RVA strains present in the swine ProSystems RCE rotavirus vaccine.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and disability worldwide, yet ASCVD risk factor control and secondary prevention rates remain low. A fixed-dose combination of blood pressure- and cholesterol-lowering and antiplatelet treatments into a single pill, or polypill, has been proposed as one strategy to reduce the global burden of ASCVD.

Objectives: To determine the effect of fixed-dose combination therapy on all-cause mortality, fatal and non-fatal ASCVD events, and adverse events.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) has been found throughout Europe and Asia, and has emerged in North and South America. A whole genome sequence was obtained from a paraffin-embedded tissue sample from the Instituto Colombiano Agropecuario (ICA), Colombia through Next Generation Sequencing techniques to further understand the evolution of PEDV.

View Article and Find Full Text PDF

Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial.

View Article and Find Full Text PDF