Laser-driven plasma accelerators provide tabletop sources of relativistic electron bunches and femtosecond x-ray pulses, but usually require petawatt-class solid-state-laser pulses of wavelength λ ~ 1 μm. Longer-λ lasers can potentially accelerate higher-quality bunches, since they require less power to drive larger wakes in less dense plasma. Here, we report on a self-injecting plasma accelerator driven by a long-wave-infrared laser: a chirped-pulse-amplified CO laser (λ ≈ 10 μm).
View Article and Find Full Text PDFWe report single-shot, time-resolved observation of self-steepening and temporal splitting of near-infrared, 50 fs, micro-joule pulses propagating nonlinearly in flint (SF11) glass. A coherent, smooth-profiled, 60-nm-bandwidth probe pulse that propagated obliquely to the main pulse through the Kerr medium recorded a time sequence of longitudinal projections of the main pulse's induced refractive index profile in the form of a phase-shift "streak," in which frequency-domain interferometry recovered with ∼10 fs temporal resolution. A three-dimensional simulation based on a unidirectional pulse propagation equation reproduced observed pulse profiles.
View Article and Find Full Text PDFIssue: As healthcare educators, we must continually evaluate innovative technologies and practices that may assist us in meeting the complex needs of individuals. In this study, we sought to address some barriers associated with using virtual reality (VR) to assess an interprofessional team of students' knowledge of and practice with telehealth and their ability to address psychosocial health.
Methods: A non-experimental, descriptive, embedded (explanatory quan/QUAL) mixed methods design of 240 students enrolled in the IPE Journey of Professional Trans-formation, Fall 2022.
Femtosecond lasers are powerful in studying matter's ultrafast dynamics within femtosecond to attosecond time scales. Drawing a three-dimensional (3D) topological map of the optical field of a femtosecond laser pulse including its spatiotemporal amplitude and phase distributions, allows one to predict and understand the underlying physics of light interaction with matter, whose spatially resolved transient dielectric function experiences ultrafast evolution. However, such a task is technically challenging for two reasons: first, one has to capture in single-shot and squeeze the 3D information of an optical field profile into a two-dimensional (2D) detector; second, typical detectors are only sensitive to intensity or amplitude information rather than phase.
View Article and Find Full Text PDFUnderstanding light-matter interaction at the nanoscale by observation of fine details of electromagnetic fields is achieved by bringing nanoscale probes into the nearfield of light sources, capturing information that is lost in the far field. Although metal coated probes are often used for nearfield microscopy, they strongly perturb the electromagnetic fields under study. Here, through experiment and simulation, we detail light collection by uncoated fiber probes, which minimize such perturbation.
View Article and Find Full Text PDFWe report the development of a multipurpose differential x-ray calorimeter with a broad energy bandwidth. The absorber architecture is combined with a Bayesian unfolding algorithm to unfold high energy x-ray spectra generated in high-intensity laser-matter interactions. Particularly, we show how to extract absolute energy spectra and how our unfolding algorithm can reconstruct features not included in the initial guess.
View Article and Find Full Text PDFTwo-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < < 1.
View Article and Find Full Text PDFHollow plasma channels are attractive for lepton acceleration because they provide intrinsic emittance preservation regimes. However, beam breakup instabilities dominate the dynamics. Here, we show that thin, warm hollow channels can sustain large-amplitude plasma waves ready for high-quality positron acceleration.
View Article and Find Full Text PDFWe reconstruct spectra of secondary X-rays from a tunable 250-350 MeV laser wakefield electron accelerator from single-shot X-ray depth-energy measurements in a compact (7.5 × 7.5 × 15 cm), modular X-ray calorimeter made of alternating layers of absorbing materials and imaging plates.
View Article and Find Full Text PDFMetre-scale plasma wakefield accelerators have imparted energy gain approaching 10 gigaelectronvolts to single nano-Coulomb electron bunches. To reach useful average currents, however, the enormous energy density that the driver deposits into the wake must be removed efficiently between shots. Yet mechanisms by which wakes dissipate their energy into surrounding plasma remain poorly understood.
View Article and Find Full Text PDFWe report observations of coherent optical transition radiation interferometry (COTRI) patterns generated by microbunched ∼200-MeV electrons as they emerge from a laser-driven plasma accelerator. The divergence of the microbunched portion of electrons, deduced by comparison to a COTRI model, is ∼9× smaller than the ∼3 mrad ensemble beam divergence, while the radius of the microbunched beam, obtained from COTR images on the same shot, is <3 μm. The combined results show that the microbunched distribution has estimated transverse normalized emittance ∼0.
View Article and Find Full Text PDFWe combined optical and atomic force microscopy to observe morphology and kinetics of microstructures (typically referred to as bees) that formed at free surfaces of unmodified Performance Graded (PG) 64-22 asphalt binders upon cooling from 150°C to room temperature (RT) at 5°C min , and changes in these microstructures when the surface was terminated with a transparent solid (glass) or liquid (glycerol) overlayer. The main findings are: (1) at free binder surfaces, wrinkled microstructures started to form near the crystallization temperature (∼45°C) of saturates such as wax observed by differential scanning calorimetry, then grew to ∼5 µm diameter, ∼25 nm wrinkle amplitude and 10-30% surface area coverage upon cooling to RT, where they persisted indefinitely without observable change in shape or density. (2) Glycerol coverage of the binder surface during cooling reduced wrinkled area and wrinkle amplitude three-fold compared to free binder surfaces upon initial cooling to RT; continued glycerol coverage at RT eliminated most surface microstructures within ∼4 h.
View Article and Find Full Text PDFWe study theoretically harmonic generation from ionizing nano-clusters irradiated by intense few-cycle laser pulses and identify a Brunel-type harmonic generation mechanism that originates from subcycle ionization dynamics in clusters. Compared to Brunel harmonics in gases, the spectra are shifted toward odd-order harmonics of Mie frequency ω due to efficient excitation of Mie oscillations. Considering the appreciable single-cluster harmonic yield and the relaxed phase-matching condition in overdense clustered plasmas, clusters driven by few-cycle laser pulses can be a promising source of vacuum-ultraviolet radiation.
View Article and Find Full Text PDFJ Microsc
September 2018
We use near-infrared dark-field optical microscopy to probe isothermal time variation of the volume fraction of naturally-occurring, subsurface microstructures in PG 64-22 asphalt binders at temperature T=30∘C, following a rapid heating (cooling) increment |ΔT|=20∘C from initial temperature T0=10∘C(50∘C). We compare these microstructure variations with isothermal time variations of the magnitude |G30∗(t)| of the bulk complex shear modulus measured for identical sample conditions with a Dynamic Shear Rheometer. The main findings are: (1) Microstructure volume fraction (inferred from intensity I(t) of near-infrared optical scatter) and |G∗(t)| both continue to change appreciably long after measurable changes of binder temperature cease.
View Article and Find Full Text PDFPiezoelectric and ferroelectric properties in the two-dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-InSe nanoflakes. The noncentrosymmetric R3m symmetry of the α-InSe samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements.
View Article and Find Full Text PDFWe present an analytical formalism elucidating how information is stored in chirped optical probes by describing the effects of sinusoidal temporal modulations on the electric field. We show that the modulations produce spectral sidebands which can be interpreted as temporal sidebands due to the time-wavelength mapping, an effect we call temporally encoded spectral shifting (TESS). A derivation is presented for the case of chirped-pulse spectral interferometry showing how to recover both the amplitude and the periodicity of the modulation from a Fourier transform of the interferogram.
View Article and Find Full Text PDFWe derive an analytic expression for the height correlation function of a homogeneous, isotropic rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces and comparing extracted height correlation functions to those derived from atomic force microscopy (AFM).
View Article and Find Full Text PDFWe introduce noncontact optical microscopy and optical scattering to characterize asphalt binder microstructure at temperatures ranging from 15°C to 85°C for two compositionally different asphalt binders. We benchmark optical measurements against rheometric measurements of the magnitude of the temperature-dependent bulk complex shear modulus |G*(T)|. The main findings are: (1) Elongated (∼5 × 1 μm), striped microstructures (known from AFM studies as 'bees' because they resemble bumble-bees) are resolved optically, found to reside primarily at the surface and do not reappear immediately after a single heating-cooling cycle.
View Article and Find Full Text PDFWe visualize ps-time-scale evolution of an electron density bubble--a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse--from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ∼ 100 MeV electron beam.
View Article and Find Full Text PDFTomography--cross-sectional imaging based on measuring radiation transmitted through an object along different directions--enables non-invasive imaging of hidden stationary objects, such as internal bodily organs, from their sequentially measured projections. Here we adapt tomographic methods to visualize--in one laser shot--the instantaneous structure and evolution of a laser-induced object propagating through a transparent Kerr medium. We reconstruct 'movies' of a laser pulse's diffraction, self-focusing and filamentation from phase 'streaks' imprinted onto probe pulses that cross the main pulse's path simultaneously at different angles.
View Article and Find Full Text PDFWe demonstrate a single-shot method of visualizing the evolution of light-speed, laser-generated structures as they propagate over hundreds of Rayleigh lengths (typically ≥10 cm) through a tenuous medium. An ultrashort probe pulse crosses the object's path at a small angle (θ<5°) and a specific time delay. Copies of the phase-modulated probe are then relay-imaged to separate detectors from selected object planes along the propagation path.
View Article and Find Full Text PDFLaser-plasma accelerators of only a centimetre's length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence.
View Article and Find Full Text PDFCommunity Dent Health
December 2012
Oxide-embedded and oxide-free alkyl-terminated silicon (Si) nanocrystals with diameters ranging from 3 nm to greater than 10 nm were studied by Raman spectroscopy. For ligand-passivated nanocrystals, the zone center Raman-active mode of diamond cubic Si shifted to lower frequency with decreasing size, accompanied by asymmetric peak broadening, as extensively reported in the literature. The size dependence of the Raman peak shifts, however, was significantly more pronounced than previously reported or predicted by the RWL (Richter, Wang, and Ley) and bond polarizability models.
View Article and Find Full Text PDF