, known as the Mediterranean fruit fly (), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A more sustainable and species-specific alternative strategy may be based on double-stranded RNA (dsRNA) delivery through feeding to disrupt essential functions in pest insects, which is poorly reported in dipteran species.
View Article and Find Full Text PDFFast emitting polymeric scintillators are requested in advanced applications where high speed detectors with a large signal-to-noise ratio are needed. However, their low density implies a weak stopping power of high energy radiation and thus a limited light output and sensitivity. To enhance their performance, polymeric scintillators can be loaded with dense nanoparticles (NPs).
View Article and Find Full Text PDFMorphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO).
View Article and Find Full Text PDFDifferent therapies are adopted for the treatment of deep seated tumours in combination or as an alternative to surgical removal or chemotherapy: radiotherapy with photons (RT), particle therapy (PT) with protons or even heavier ions like C, are now available in clinical centres. In addition to these irradiation modalities, the use of Very High Energy Electron (VHEE) beams (100-200 MeV) has been suggested in the past, but the diffusion of that technique was delayed due to the needed space and budget, with respect to standard photon devices. These disadvantages were not paired by an increased therapeutic efficacy, at least when comparing to proton or carbon ion beams.
View Article and Find Full Text PDFPurpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment.
View Article and Find Full Text PDFParticle therapy in which deep seated tumours are treated using C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing.
View Article and Find Full Text PDFIn proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point.
View Article and Find Full Text PDFThe high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient.
View Article and Find Full Text PDFParticle therapy is a therapy technique that exploits protons or light ions to irradiate tumor targets with high accuracy. Protons and C ions are already used for irradiation in clinical routine, while new ions like He and O are currently being considered. Despite the indisputable physical and biological advantages of such ion beams, the planning of charged particle therapy treatments is challenged by range uncertainties, i.
View Article and Find Full Text PDFParticle therapy (PT) can exploit heavy ions (such as He, C or O) to enhance the treatment efficacy, profiting from the increased Relative Biological Effectiveness and Oxygen Enhancement Ratio of these projectiles with respect to proton beams. To maximise the gain in tumor control probability a precise online monitoring of the dose release is needed, avoiding unnecessary large safety margins surroundings the tumor volume accounting for possible patient mispositioning or morphological changes with respect to the initial CT scan. The Dose Profiler (DP) detector, presented in this manuscript, is a scintillating fibres tracker of charged secondary particles (mainly protons) that will be operating during the treatment, allowing for an online range monitoring.
View Article and Find Full Text PDFProton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like [Formula: see text] have recently been considered as projectiles in particle therapy centres and might represent a good compromise between the linear energy transfer and the radiobiological effectiveness of [Formula: see text] ion and proton beams, allowing improved tumour control probability and minimising normal tissue complication probability. All the currently used p, [Formula: see text] and [Formula: see text] ion beams allow achieving sharp dose gradients on the boundary of the target volume, however the accurate dose delivery is sensitive to the patient positioning and to anatomical variations with respect to photon therapy.
View Article and Find Full Text PDFIn this paper we report the re-analysis of the data published in (Piersanti et al. 2014) documenting the charged secondary particles production induced by the interaction of a 220 MeV/u 12C ion beam impinging on a polymethyl methacrylate (PMMA) target, measured in 2012 at the GSI facility in Darmstadt (Germany). This re-analysis takes into account the inhomogeneous light response of the LYSO crystal in the experimental setup measured in a subsequent experiment (2014) performed in the Heidelberg Ion- Beam Therapy Center.
View Article and Find Full Text PDFPurpose: The real-time monitoring of the spread-out Bragg peak would allow the planned dose delivered during treatment to be directly verified, but this poses a major challenge in modern ion beam therapy. A possible method to achieve this goal is to exploit the production of secondary particles by the nuclear reactions of the beam with the patient and correlate their emission profile to the planned target volume position. In this study, we present both the production rate and energy spectra of the prompt-γ produced by the interactions of the C ion beam with a polymethyl methacrylate (PMMA) target.
View Article and Find Full Text PDFNowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body.
View Article and Find Full Text PDFCharged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines.
View Article and Find Full Text PDFCharged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented.
View Article and Find Full Text PDFThe interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA).
View Article and Find Full Text PDFClassic CO (also called Iso-Kikuchi syndrome) represents a benign, isolated condition associated with normal patient outcome. Nevertheless, clinical follow-up and/or further clinically-based tests are needed to exclude other nail diseases associated with multisystem pathology; complete family history is also important to determine sporadic or hereditary transmission of such condition.
View Article and Find Full Text PDFUnlabelled: A novel radioguided surgery (RGS) technique for cerebral tumors using β(-) radiation is being developed. Checking for a radiotracer that can deliver a β(-) emitter to the tumor is a fundamental step in the deployment of such a technique. This paper reports a study of the uptake of (90)Y-DOTATOC in meningiomas and high-grade gliomas (HGGs) and a feasibility study of the RGS technique in these types of tumor.
View Article and Find Full Text PDFHormones may play a role in the pathophysiology of vernal keratoconjunctivitis (VKC). An increased incidence of thyroid autoantibodies was recently observed in VKC, although there were no data on thyroid function. Two hundred and eighty-eight patients (202 males, 86 females; range 5.
View Article and Find Full Text PDFThe background induced by the high penetration power of the radiation is the main limiting factor of the current radio-guided surgery (RGS). To partially mitigate it, a RGS with β(+)-emitting radio-tracers has been suggested in literature. Here we propose the use of β(-)-emitting radio-tracers and β(-) probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes probes less effective.
View Article and Find Full Text PDFThe radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue-like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g.
View Article and Find Full Text PDF