Publications by authors named "MANOLESCU A"

Endohedral C fullerenes with up to four encapsulated Ca atoms were investigated by molecular dynamics simulations (AIMD). The relatively long runs allow us to describe the correlated movement of the Ca atoms inside the fullerene cage. For the systems with one or two Ca atoms a relatively unimpeded rotation was conjectured by earlier nuclear magnetic resonance experiments and supported by previous calculations used to sample the potential energy landscape.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate and rapid breath monitoring plays a crucial role in healthcare, particularly for diagnosing conditions like sleep apnea and detecting early physiological disorders; however, existing devices are often uncomfortable and expensive.
  • This paper discusses the development of a sensitive respiratory sensor using silicon nanowires (SiNWs) created through a cost-effective technique involving metal-assisted chemical etching, emphasizing the importance of reducing production costs by exploring aluminum (Al) electrodes as an alternative to gold (Au).
  • The study compares the performance of SiNWs breath sensors with p-type and n-type silicon, observing that the choice of electrode material affects the sensor's response, ultimately highlighting the need for further research to understand the underlying mechanics of these interactions.
View Article and Find Full Text PDF

Flux-periodic oscillations of the superconducting gap in proximitized core-shell nanowires are explored. Periodicity of oscillations in the energy spectrum of a cylindrical nanowire is compared with nanowires having hexagonal and square cross-section geometry, along with the effects of Zeeman and Rashba spin-orbit interaction. A transition between/and/2periodicity is found and shown to be dependent on the chemical potential, with correspondence to degeneracy points of the angular momentum quantum number.

View Article and Find Full Text PDF

We calculate the charge and heat currents carried by electrons, originating from a temperature gradient and a chemical potential difference between the two ends of tubular nanowires with different geometries of the cross-sectional areas: circular, square, triangular, and hexagonal. We consider nanowires based on InAs semiconductor material, and use the Landauer-Büttiker approach to calculate the transport quantities. We include impurities in the form of delta scatterers and compare their effect for different geometries.

View Article and Find Full Text PDF

Electronic and stability properties of quasi-2D alkylammonium perovskites are investigated using density functional theory (DFT) calculations and validated experimentally on selected classes of compounds. Our analysis is focused on perovskite structures of formula (A)(A')PbX, with large cations A = butyl-, pentyl-, hexylammonium (BA, PA, HXA), small cations A' = methylammonium, formamidinium, ethylammonium, guanidinium (MA, FA, EA, GA) and halogens X = I, Br, Cl. The role of the halogen ions is outlined for the band structure, stability and defect formation energies.

View Article and Find Full Text PDF

Silicon nanowires (SiNWs) are known to exhibit a large piezoresistance (PZR) effect, making them suitable for various sensing applications. Here, we report the results of a PZR investigation on randomly distributed and interconnected vertical silicon nanowire arrays as a pressure sensor. The samples were produced from p-type (100) Si wafers using a silver catalyzed top-down etching process.

View Article and Find Full Text PDF

Purpose: Nephrolithiasis is a urological pathology that occurs at high rates and carries a great burden in terms of costs. The probability of recurrence is significant, necessitating improvements in prophylaxis and understanding of the disease mechanism. Despite the high heritability of this disease, only five genome-wide association studies (GWAS) of nephrolithiasis have been published.

View Article and Find Full Text PDF

We calculate the charge and heat current associate with electrons, generated by a temperature gradient and chemical potential difference between two ends of a tubular nanowire of 30 nm radius in the presence of an external magnetic field perpendicular to its axis. We consider a nanowire based on a semiconductor material, and use the Landauer-Büttiker approach to calculate the transport quantities. We obtain the variation of the Seebeck coefficient (S), thermal conductivity (κ), and the figure of merit (ZT), with respect to the temperature up to 20 K, and with the magnetic field up to 3 T.

View Article and Find Full Text PDF

The effects of geometry on the hosting of Majorana zero modes are explored in core-shell nanowires with a hexagonal core and a triangular shell, and vice versa. The energy interval separating electronic states localized in the corners from states localized on the sides of the shell is shown to be larger for a triangular nanowire with a hexagonal core, than a triangular one. We build the topological phase diagram for both cases and compare them to earlier work on prismatic nanowires with matching core and shell geometry.

View Article and Find Full Text PDF

Films of SiGe nanocrystals (NCs) in oxide have the advantage of tuning the energy band gap by adjusting SiGe NCs composition and size. In this study, SiGe-SiO amorphous films were deposited by magnetron sputtering on Si substrate followed by rapid thermal annealing at 700, 800 and 1000 °C. We investigated films with Si:Ge:SiO compositions of 25:25:50 vol.

View Article and Find Full Text PDF

Transport properties of a quantum dot coupled to a photon cavity are investigated using a quantum master equation in the steady-state regime. In the off-resonance regime, when the photon energy is smaller than the energy spacing between the lowest electron states of the quantum dot, we calculate the current that is generated by photon replica states as the electronic system is pumped with photons. Tuning the electron-photon coupling strength, the photocurrent can be enhanced by the influences of the photon polarization, and the cavity-photon coupling strength of the environment.

View Article and Find Full Text PDF

Multilayer structures comprising of SiO/SiGe/SiO and containing SiGe nanoparticles were obtained by depositing SiO layers using reactive direct current magnetron sputtering (dcMS), whereas, Si and Ge were co-sputtered using dcMS and high-power impulse magnetron sputtering (HiPIMS). The as-grown structures subsequently underwent rapid thermal annealing (550-900 °C for 1 min) in N ambient atmosphere. The structures were investigated using X-ray diffraction, high-resolution transmission electron microscopy together with spectral photocurrent measurements, to explore structural changes and corresponding properties.

View Article and Find Full Text PDF

Anisotropic transverse light scattering by prismatic nanowires is a natural outcome of their geometry. In this work, we perform numerical calculations of the light scattering characteristics for nanowires in the optical and near-infrared range and explore the possibility of tuning the directivity by changing the angle of light incidence. The scattering cross section and the directivity of the scattered light when it is incident perpendicular to a facet or to an edge of the prism are investigated both with transverse electric and with transverse magnetic polarizations.

View Article and Find Full Text PDF

We discuss the low energy electronic states in hexagonal rings. These states correspond to the transverse modes in core-shell nanowires built of III-V semiconductors which typically have a hexagonal cross section. In the case of symmetric structures the 12 lowest states (including the spin) are localized in the corners, while the next following 12 states are localized mostly on the sides.

View Article and Find Full Text PDF

We recall theoretical studies on transient transport through interacting mesoscopic systems. It is shown that a generalized master equation (GME) written and solved in terms of many-body states provides the suitable formal framework to capture both the effects of the Coulomb interaction and electron-photon coupling due to a surrounding single-mode cavity. We outline the derivation of this equation within the Nakajima-Zwanzig formalism and point out technical problems related to its numerical implementation for more realistic systems which can neither be described by non-interacting two-level models nor by a steady-state Markov-Lindblad equation.

View Article and Find Full Text PDF

We study the transport properties of a wire-dot system coupled to a cavity and a photon reservoir. The system is considered to be microstructured from a two-dimensional electron gas in a GaAs heterostructure. The 3D photon cavity is active in the far-infrared or the terahertz regime.

View Article and Find Full Text PDF

SiGe nanoparticles dispersed in a dielectric matrix exhibit properties different from those of bulk and have shown great potential in devices for application in advanced optoelectronics. Annealing is a common fabrication step used to increase crystallinity and to form nanoparticles in such a system. A frequent downside of such annealing treatment is the formation of insulating SiO layer at the matrix/SiGe interface, degrading the optical properties of the structure.

View Article and Find Full Text PDF

We theoretically investigate thermoelectric effects in a quantum dot system under the influence of a linearly polarized photon field confined to a 3D cavity. A temperature gradient is applied to the system via two electron reservoirs that are connected to each end of the quantum dot system. The thermoelectric current in the steady state is explored using a quantum master equation.

View Article and Find Full Text PDF

We report a comprehensive study of the impact of the structural properties in radial GaAs-AlGaAs nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantum well thickness at different facets. Typical thickness fluctuations of the radial quantum well observed by transmission electron microscopy lead to pronounced localization. Our optical data exhibit clear spectral shifts and a multipeak structure of the emission for such asymmetric ring structures resulting from spatially separated, yet interconnected quantum well systems.

View Article and Find Full Text PDF

In this work, we theoretically model the time-dependent transport through an asymmetric double quantum dot etched in a two-dimensional wire embedded in a far-infrared (FIR) photon cavity. For the transient and the intermediate time regimes, the current and the average photon number are calculated by solving a Markovian master equation in the dressed-states picture, with the Coulomb interaction also taken into account. We predict that in the presence of a transverse magnetic field the interdot Rabi oscillations appearing in the intermediate and transient regime coexist with slower non-equilibrium fluctuations in the occupation of states for opposite spin orientation.

View Article and Find Full Text PDF

Two familial forms of colorectal cancer (CRC), Lynch syndrome (LS) and familial adenomatous polyposis (FAP), are caused by rare mutations in DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS2) and the genes APC and MUTYH, respectively. No information is available on the presence of high-risk CRC mutations in the Romanian population. We performed whole-genome sequencing of 61 Romanian CRC cases with a family history of cancer and/or early onset of disease, focusing the analysis on candidate variants in the LS and FAP genes.

View Article and Find Full Text PDF

Proteins circulating in the blood are critical for age-related disease processes; however, the serum proteome has remained largely unexplored. To this end, 4137 proteins covering most predicted extracellular proteins were measured in the serum of 5457 Icelanders over 65 years of age. Pairwise correlation between proteins as they varied across individuals revealed 27 different network modules of serum proteins, many of which were associated with cardiovascular and metabolic disease states, as well as overall survival.

View Article and Find Full Text PDF

We consider core-shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing transverse potentials and finite relative phases between the parent superconductors.

View Article and Find Full Text PDF

In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias. For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the size of the thermoelectric current.

View Article and Find Full Text PDF