Objective: Fournier's gangrene (FG) is a rare, life-threatening necrotizing fasciitis primarily affecting the perineal, genital, and perianal regions. This rapidly progressing bacterial infection predominantly affects middleaged and elderly men. This multicenter study aims to describe the management in a wide cohort of Fournier's gangrene cases that presented to three tertiary centers with early extensive surgical debridement.
View Article and Find Full Text PDFAL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (V) as well as different length segments of the constant region (C), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway.
View Article and Find Full Text PDFBackground: Robotic spinal surgery may result in better pedicle screw placement accuracy, and reduction in radiation exposure and length of stay, compared to freehand surgery. The purpose of this randomized controlled trial (RCT) is to compare screw placement accuracy of robot-assisted surgery with integrated 3D computer-assisted navigation versus freehand surgery with 2D fluoroscopy for arthrodesis of the thoraco-lumbar spine.
Methods: This is a single-centre evaluator-blinded RCT with a 1:1 allocation ratio.
β-microglobulin (β-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N β-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans () strain expressing human WT β-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N β-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with β-m levels rather than with the presence of mutations, being more pronounced in WT β-m worms.
View Article and Find Full Text PDFThe plasma protein transthyretin (TTR), a transporter for thyroid hormones and retinol in plasma and cerebrospinal fluid, is responsible for the second most common type of systemic (ATTR) amyloidosis either in its wild type form or as a result of destabilizing genetic mutations that increase its aggregation propensity. The association between free calcium ions (Ca) and TTR is still debated, although recent work seems to suggest that calcium induces structural destabilization of TTR and promotes its aggregation at non-physiological low pH in vitro. We apply high-resolution NMR spectroscopy to investigate calcium binding to TTR showing the formation of labile interactions, which leave the native structure of TTR substantially unaltered.
View Article and Find Full Text PDFThe globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state.
View Article and Find Full Text PDFCardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTR. The model is characterised by substantial ATTR amyloid deposits in the heart and tongue.
View Article and Find Full Text PDFApolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.
View Article and Find Full Text PDFSystemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation and may offer an important tool for drug discovery.
View Article and Find Full Text PDFSystemic amyloidosis is a serious disease which is caused when normal circulating proteins misfold and aggregate extracellularly as insoluble fibrillary deposits throughout the body. This commonly results in cardiac, renal and neurological damage. The tissue target, progression and outcome of the disease depends on the type of protein forming the fibril deposit, and its correct identification is central to determining therapy.
View Article and Find Full Text PDFThe availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β-microglobulin (D76N β-m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein.
View Article and Find Full Text PDFThe wild type protein, transthyretin (TTR), and over 120 genetic TTR variants are amyloidogenic and cause, respectively, sporadic and hereditary systemic TTR amyloidosis. The homotetrameric TTR contains two identical thyroxine binding pockets, occupation of which by specific ligands can inhibit TTR amyloidogenesis in vitro. Ligand binding stabilizes the tetramer, inhibiting its proteolytic cleavage and its dissociation.
View Article and Find Full Text PDFIntroduction: Hereditary fibrinogen Aα-chain (AFib) amyloidosis is a relatively uncommon renal disease associated with a small number of pathogenic fibrinogen Aα (FibA) variants; wild-type FibA normally does not result in amyloid deposition. Proteomics is now routinely used to identify the amyloid type in clinical samples, and we report here our algorithm for identification of FibA in amyloid.
Methods: Proteomics data from 1001 Congo red-positive patient samples were examined using the Mascot search engine to interrogate the Swiss-Prot database and generate protein identity scores.
The tissue diagnosis of amyloidosis and confirmation of fibril protein type, which are crucial for clinical management, have traditionally relied on Congo red (CR) staining followed by immunohistochemistry (IHC) using fibril protein specific antibodies. However, amyloid IHC is qualitative, non-standardised, requires operator expertise, and not infrequently fails to produce definitive results. More recently, laser dissection mass spectrometry (LDMS) has been developed as an alternative method to characterise amyloid in tissue sections.
View Article and Find Full Text PDFSystemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils In sharp contrast, the widely used model of denaturation and aggregation of TTR by prolonged exposure to pH 4.
View Article and Find Full Text PDFProteomics is becoming the de facto gold standard for identifying amyloid proteins and is now used routinely in a number of centres. The technique is compound class independent and offers the added ability to identify variant and modified proteins. We re-examined proteomics results from a number of formalin-fixed paraffin-embedded amyloid samples, which were positive for transthyretin (TTR) by immunohistochemistry and proteomics, using the UniProt human protein database modified to include TTR variants.
View Article and Find Full Text PDFUnlabelled: Diagnosis and treatment of systemic amyloidosis depend on accurate identification of the specific amyloid fibril protein forming the tissue deposits. Confirmation of monoclonal immunoglobulin light chain amyloidosis (AL), requiring cytotoxic chemotherapy, and avoidance of such treatment in non-AL amyloidosis, are particularly important. Proteomic analysis characterises amyloid proteins directly.
View Article and Find Full Text PDFSystemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of β-microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions.
View Article and Find Full Text PDFDissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloid fibrillogenesis. It is modelled by exposure of the protein to non-physiological low pH in vitro and is inhibited by small molecule compounds, such as the drug tafamidis. We have recently identified a new mechano-enzymatic pathway of TTR fibrillogenesis in vitro, catalysed by selective proteolytic cleavage, which produces a high yield of genuine amyloid fibrils.
View Article and Find Full Text PDFC-reactive protein (CRP) and serum amyloid P component (SAP), two major classical pentraxins in humans, are soluble pattern recognition molecules that regulate the innate immune system, but their chaperone activities remain poorly understood. Here, we examined their effects on the amyloid fibril formation from Alzheimer's amyloid β (Aβ) (1-40) and on that from D76N β2-microglobulin (β2-m) which is related to hereditary systemic amyloidosis. CRP and SAP dose-dependently and substoichiometrically inhibited both Aβ(1-40) and D76N β2-m fibril formation in a Ca(2+)-independent manner.
View Article and Find Full Text PDFThe amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues.
View Article and Find Full Text PDF