Publications by authors named "MAGYAR Z"

Plants respond to higher ambient temperatures by modifying their growth rate and habitus. This review aims to summarize the accumulated knowledge obtained with Arabidopsis seedlings grown at normal and elevated ambient temperatures. Thermomorphogenesis in the shoot and the root is overviewed separately, since the experiments indicate differences in key aspects of thermomorphogenesis in the two organs.

View Article and Find Full Text PDF

Background: Malignant hyperthermia susceptibility (MHS) and acute pancreatitis (AP) share a common cellular pathomechanism that is Ca-overload of the muscle fiber and the pancreatic acinar cell (PAC). In the muscle, gain-of-function mutations of the ryanodine receptor (RyR1) make the Ca-release mechanism hypersensitive to certain ligands, including Ca, volatile anaesthetics and succinylcholine, creating a medical emergency when the patient is exposed to these drugs. As RyR1 was shown to contribute to Ca-overload in PAC, we presumed that pancreata of MHS individuals are more prone to AP.

View Article and Find Full Text PDF

Warm temperatures accelerate plant growth, but the underlying molecular mechanism is not fully understood. Here, we show that increasing the temperature from 22°C to 28°C rapidly activates proliferation in the apical shoot and root meristems of wild-type Arabidopsis seedlings. We found that one of the central regulators of cell proliferation, the cell cycle inhibitor RETINOBLASTOMA-RELATED (RBR), is suppressed by warm temperatures.

View Article and Find Full Text PDF

Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation.

View Article and Find Full Text PDF

Physiological muscle contraction requires an intact ligand gating mechanism of the ryanodine receptor 1 (RyR1), the Ca-release channel of the sarcoplasmic reticulum. Some mutations impair the gating and thus cause muscle disease. The RyR1 mutation T4706M is linked to a myopathy characterized by muscle weakness.

View Article and Find Full Text PDF

Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia.

View Article and Find Full Text PDF

Ryanodine receptors (RyRs) are Ca release channels, gated by Ca in the cytosol and the sarcoplasmic reticulum lumen. Their regulation is impaired in certain cardiac and muscle diseases. Although a lot of data is available on the luminal Ca regulation of RyR, its interpretation is complicated by the possibility that the divalent ions used to probe the luminal binding sites may contaminate the cytoplasmic sites by crossing the channel pore.

View Article and Find Full Text PDF

Wilms' tumor (WT) is the most common renal malignancy in children. In diffuse hyperplastic perilobar nephroblastomatosis (DHPLN), nephrogenic rests result in a bulky enlargement of the kidney, a condition considered as a premalignant state before WT. Despite relevant clinical differences between WT and DHPLN, they are often challenging to distinguish based on histology.

View Article and Find Full Text PDF

Sucrose and auxin are well-known determinants of root system architecture (RSA). However, the factors that connect the signaling pathways evoked by these two critical factors during root development are poorly understood. In this study, we report the role of MEDIATOR SUBUNIT17 (MED17) in RSA and its involvement in the transcriptional integration of sugar and auxin signaling pathways in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Cardiac diseases are the leading causes of death, with a growing number of cases worldwide, posing a challenge for both healthcare and research. Therefore, the most relevant aim of cardiac research is to unravel the molecular pathomechanisms and identify new therapeutic targets. Cardiac ryanodine receptor (RyR2), the Ca release channel of the sarcoplasmic reticulum, is believed to be a good therapeutic target in a group of certain heart diseases, collectively called cardiac ryanopathies.

View Article and Find Full Text PDF

Proteins are prone to aggregate when expressed above their solubility limits. Aggregation may occur rapidly, potentially as early as proteins emerge from the ribosome, or slowly, following synthesis. However, in vivo data on aggregation rates are scarce.

View Article and Find Full Text PDF

How cell size and number are determined during organ development remains a fundamental question in cell biology. Here, we identified a GRAS family transcription factor, called SCARECROW-LIKE28 (SCL28), with a critical role in determining cell size in Arabidopsis. SCL28 is part of a transcriptional regulatory network downstream of the central MYB3Rs that regulate G2 to M phase cell cycle transition.

View Article and Find Full Text PDF

BACKGROUND Wilms' tumor is a common renal malignancy of early childhood with a generally favorable prognosis depending upon histological subtype. It is becoming increasingly clear that differences in miRNA (microRNA) expression signature represent important clues helping us predict a tumor's response to chemotherapy. In our study, we aimed to reveal miRNAs deregulated in regressive Wilms' tumors from FFPE (formalin-fixed, paraffin-embedded) samples, also showing whether such samples are reliable miRNA sources in Wilms' tumor.

View Article and Find Full Text PDF

The DNA of all organisms is constantly damaged by physiological processes and environmental conditions. Upon persistent damage, plant growth and cell proliferation are reduced. Based on previous findings that RBR1, the only Arabidopsis homolog of the mammalian tumor suppressor gene retinoblastoma, plays a key role in the DNA damage response in plants, we unravel here the network of RBR1 interactors under DNA stress conditions.

View Article and Find Full Text PDF

Shortly after that COVID-19 appeared it became clear, that although the disease mainly characterized by respiratory symptoms, other signs frequently appeared, which showed involvation of other organs. There are several new publications which report about neurological complications. According to data developing of encephalitis could be relatively frequent among these.

View Article and Find Full Text PDF

Transient receptor potential cation channel subfamily M member 4 (TRPM4) is a Ca-activated nonselective cation channel that mediates membrane depolarization. Although, a current with the hallmarks of a TRPM4-mediated current has been previously reported in pancreatic acinar cells (PACs), the role of TRPM4 in the regulation of acinar cell function has not yet been explored. In the present study, we identify this TRPM4 current and describe its role in context of Ca signaling of PACs using pharmacological tools and TRPM4-deficient mice.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice.

View Article and Find Full Text PDF

Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects.

View Article and Find Full Text PDF

In this study we performed the comprehensive pharmacological analysis of two stereoisomers of 4-chloro-meta-cresol (4CMC), a popular ryanodine receptor (RyR) agonist used in muscle research. Experiments investigating the Ca-releasing action of the isomers demonstrated that the most potent isomer was 4-chloro-orto-cresol (4COC) (EC = 55 ± 14 μM), although 3-chloro-para-cresol (3CPC) was more effective, as it was able to induce higher magnitude of Ca flux from isolated terminal cisterna vesicles. Nevertheless, 3CPC stimulated the hydrolytic activity of the sarcoplasmic reticulum ATP-ase (SERCA) with an EC of 91 ± 17 μM, while 4COC affected SERCA only in the millimolar range (IC = 1370 ± 88 μM).

View Article and Find Full Text PDF

Purpose: Composite flaps used in reconstructive surgery may intra- and postoperatively suffer from hypoperfusion and/or ischemia-reperfusion influencing wound healing. We aimed to follow-up the effect of ischemia on adipocutaneous flaps' wound healing and microcirculation.

Methods: In anesthetized rats groin flaps were formed bilaterally.

View Article and Find Full Text PDF

The two paralogous Arabidopsis genes MAINTENANCE OF MERISTEMS (MAIN) and MAINTENANCE OF MERISTEMS LIKE1 (MAIL1) encode a conserved retrotransposon-related plant mobile domain and are known to be required for silencing of transposable elements (TE) and for primary root development. Loss of function of either MAIN or MAIL1 leads to release of heterochromatic TEs, reduced condensation of pericentromeric heterochromatin, cell death of meristem cells and growth arrest of the primary root soon after germination. Here, we show that they act in one protein complex that also contains the inactive isoform of PROTEIN PHOSPHATASE 7 (PP7), which is named PROTEIN PHOSPHATASE 7-LIKE (PP7L).

View Article and Find Full Text PDF

The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis () are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions.

View Article and Find Full Text PDF

Cell cycle entry and quiescence are regulated by the E2F transcription factors in association with RETINOBLASTOMA-RELATED (RBR). E2FB is considered to be a transcriptional activator of cell cycle genes, but its function during development remains poorly understood. Here, by studying E2FB-RBR interaction, E2F target gene expression, and epidermal cell number and shape in mutant and overexpression lines during leaf development in Arabidopsis (), we show that E2FB in association with RBR plays a role in the inhibition of cell proliferation to establish quiescence.

View Article and Find Full Text PDF

γ-Tubulin is associated with microtubule nucleation, but evidence is accumulating in eukaryotes that it also functions in nuclear processes and in cell division control independently of its canonical role. We found that in Arabidopsis thaliana, γ-tubulin interacts specifically with E2FA, E2FB, and E2FC transcription factors both in vitro and in vivo. The interaction of γ-tubulin with the E2Fs is not reduced in the presence of their dimerization partners (DPs) and, in agreement, we found that γ-tubulin interaction with E2Fs does not require the dimerization domain.

View Article and Find Full Text PDF

The E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein are principal regulators coordinating cell proliferation with differentiation, but their role during seed development is little understood. We show that in fully developed embryos, cell number was not affected either in single or double mutants for the activator-type and Accordingly, these E2Fs are only partially required for the expression of cell cycle genes. In contrast, the expression of key seed maturation genes / (/), , and is upregulated in the double mutant embryo.

View Article and Find Full Text PDF