Polymers (Basel)
January 2023
Liquid composite molding (LCM) is a class of fast and cheap processes suitable for the fabrication of large parts with good geometrical and mechanical properties. One of the main steps in an LCM process is represented by the filling stage, during which a reinforcing fiber preform is impregnated with a low-viscosity resin. Darcy's permeability is the key property for the filling stage, not usually available and depending on several factors.
View Article and Find Full Text PDFRecycling of catalysts is often performed. Additive manufacturing (AM) received increasing attention in recent years in various fields such as engineering and medicine, among others. More recently, the fabrication of three-dimensional objects used as scaffolds in heterogeneous catalysis has shown innumerable advantages, such as easier handling and waste reduction, both leading to a reduction in times and costs.
View Article and Find Full Text PDFIn the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness.
View Article and Find Full Text PDFThis work contributes to fill one of the gaps regarding nanoplastic interactions with biological systems by producing polyethylene terephthalate (PET) model nanoplastics, similar to those found in the marine environment, by means of a fast top-down approach based on mechanical fragmentation. Their size distribution and morphology were characterized by laser diffraction and atomic force microscopy (AFM). Their autofluorescence was studied by spectrofluorimetry and fluorescence imaging, being a key property for the evaluation of their interaction with biota.
View Article and Find Full Text PDFMicroplastic (MP) pollution represents one of the biggest environmental problems that is further exacerbated by the continuous degradation in the marine environment of MPs to nanoplastics (NPs). The most diffuse plastics in oceans are commodity polymers, mainly thermoplastics widely used for packaging, such as polyethylene terephthalate (PET). However, the huge interest in the chemical vector role of micro/nanoplastics, their fate and negative effects on the environment and human health is still under discussion and the research is still sparse due also to the difficulties of sampling MPs and NPs from the environment or producing NPs in laboratory.
View Article and Find Full Text PDFLiquid resin infusion processes are becoming attractive for aeronautic applications as an alternative to conventional autoclave-based processes. They still present several challenges, which can be faced only with an accurate simulation able to optimize the process parameters and to replace traditional time-consuming trial-and-error procedures. This paper presents an experimentally validated model to simulate the resin infusion process of an aeronautical component by accounting for the anisotropic permeability of the reinforcement and the chemophysical and rheological changes in the crosslinking resin.
View Article and Find Full Text PDFThis work is aimed at proposing demonstrative actions devoted to show reprocessing and recyclability of PET originating from bottles collected from the seaside, in order to increase the consumer awareness on the importance of recycling plastics. To this purpose, collected bottles were washed, cut, grinded, extruded in the form of a thin wire adopting different cooling rates, which leads to a modulation of the crystallinity content. Once having optimized the processing parameters, the extruded wire was used to produce 3D printed samples through the fused deposition modelling (FDM).
View Article and Find Full Text PDFOut-of-plane permeability of reinforcement preforms is of crucial importance in the infusion of large and thick composite panels, but so far, there are no standard experimental methods for its determination. In this work, an experimental set-up for the measurement of unsaturated through thickness permeability based on the ultrasonic wave propagation in pulse echo mode is presented. A single ultrasonic transducer, working both as emitter and receiver of ultrasonic waves, was used to monitor the through thickness flow front during a vacuum assisted resin infusion experiment.
View Article and Find Full Text PDFIt is widely believed that intensive music training can boost cognitive and visuo-motor skills. However, this evidence is primarily based on retrospective studies; this makes it difficult to determine whether a cognitive advantage is caused by the intensive music training, or it is instead a factor influencing the choice of starting a music curriculum. To address these issues in a highly ecological setting, we tested longitudinally 128 students of a Middle School in Milan, at the beginning of the first class and, 1 year later, at the beginning of the second class.
View Article and Find Full Text PDFElectronic devices used for marine applications suffer from several issues that can compromise their performance. In particular, water absorption and permeation can lead to the corrosion of metal parts or short-circuits. The added mass due to the absorbed water affects the inertia and durability of the devices, especially for flexible and very thin micro-systems.
View Article and Find Full Text PDFA novel, green route for pre-exfoliation of graphite based on a biodegradable polymer and high-power ultrasound is presented. Candelilla wax (CW), derived from the leaves of the candelilla plant, has been used for the first time as a natural non aqueous medium to induce the pre-exfoliation of expanded graphite (EG) under ultrasonic irradiation in an economical way. The proposed method uses also D-limonene as a natural organic solvent for reducing viscosity and increasing the affinity between the polar groups of EG and candelilla wax, thus improving the intercalation/exfoliation of EG.
View Article and Find Full Text PDFIn this study, two different fillers were prepared from carbon-based ashes, produced from the wooden biomass of a pyro-gasification plant, and starting from lignocellulosic waste. The first type was obtained by dry ball-milling (DBA), while the second one was prepared by oxidation in HO of the dry ball-milled ashes (oDBA). The characterization of the fillers included wide-angle x-ray diffraction (WAXD), thermogravimetric, and Fourier-transform infrared spectroscopy (FTIR) analysis.
View Article and Find Full Text PDFThe causes of delamination and porosities during press forming of pre-consolidated flat laminates (blanks) made of carbon fiber-reinforced poly(ether ketone ketone) (PEKK) were addressed in this study. In particular, the quality of the blank laminate was investigated before and after infrared heating. The consolidation quality was evaluated by thickness measurements, non-destructive inspection (NDI), and optical microscopy.
View Article and Find Full Text PDFIn this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties.
View Article and Find Full Text PDFThis article compares the catalytic activities of oxidized carbon black (oCB) and graphene oxide (eGO) samples on the kinetics of a reaction of diglycidyl ether of bisphenol A (DGEBA) with a diamine, leading to crosslinked insoluble networks. The study is mainly conducted by rheometry and Differential Scanning Calorimetry (DSC). Following the same oxidation procedure, CB samples are more efficiently oxidized than graphite samples.
View Article and Find Full Text PDFAdv Mater Interfaces
December 2016
A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation.
View Article and Find Full Text PDFWe present an experimental investigation of the curing kinetics and viscoelasticity for a number of "vitrimers" recently developed by Leibler and coworkers. Vitrimers are covalently crosslinked networks that can relax stress at elevated temperatures due to thermoreversible bond-exchange reactions. The chosen formulations are composed of diglycidyl ether of bisphenol A, commercial fatty acid mixtures and an appropriate catalyst.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2016
Hyperhidrosis, or excessive sweating, is an overlooked and potentially disabling symptom, which is often seen in social anxiety disorder. In this work an innovative advanced textile material was developed for application in the management of excessive sweating, preparing a drying yarn providing improved comfort. Hybrid cotton/hydrogel yarns were obtained by combining cotton with superabsorbent hydrogels through an optimization study focused on the achievement of the most promising product in terms of absorption properties and resistance to washings.
View Article and Find Full Text PDFThis work is aimed to present an innovative technology for the reinforcement of beams for urban furniture, produced by in-mold extrusion of plastics from solid urban waste. This material, which is usually referred to as "recycled plastic lumber", is characterized by very poor mechanical properties, which results in high deflections under flexural loads, particularly under creep conditions. The Prowaste project, founded by the EACI (European Agency for Competitiveness and Innovation) in the framework of the Eco-Innovation measure, was finalized to develop an innovative technology for selective reinforcement of recycled plastic lumber.
View Article and Find Full Text PDFPurpose: The objective of this work was to develop composite hydrogels based on poly(ethylene glycol) diacrylate (PEGDA) and collagen (Coll), potentially useful for biomedical applications.
Methods: Semi-interpenetrating polymer networks (semi-IPNs) were obtained by photo-stabilizing aqueous solutions of PEGDA and acrylic acid (AA), in the presence of collagen. Further grafting of the collagen macromolecules to the PEGDA/poly(AA) network was achieved by means of a carbodiimide-mediated crosslinking reaction.
The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors' research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments.
View Article and Find Full Text PDFPurpose: To evaluate the diagnostic performance of gold nanorod (GNR)-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety.
Methods: The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25-200 pM) and different sample volumes (50-200 μL) were exposed to pulsed laser irradiation.
The dynamics of spontaneous and sensory-evoked up-states have been recently compared, in multi-site recordings in vivo and found to have similarities and differences. Also in vitro, this is evident because we here describe a novel computational method to classify into statistically different states the spontaneous reverberating activity recorded from long-term (12-18 days-in vitro) cultured cortical neurons (from 60-site multi-electrode arrays, MEA). State classification was performed by spike number time histograms (SNTH, or other burst features) of excitatory and inhibitory neuron clusters and revealed that in novel identified states the number of engaged neurons or up-state duration can change.
View Article and Find Full Text PDFJ Mater Sci Mater Med
September 2011
Antibacterial coatings on catheters for acute dialysis were obtained by an innovative and patented silver deposition technique based on the photo-reduction of the silver solution on the surface of catheter, with consequent formation of antibacterial silver nanoparticles. Aim of this work is the structural and morphological characterization of these medical devices in order to analyze the distribution and the size of clusters on the polymeric surface, and to verify the antibacterial capability of the devices treated by this technique against bacterial proliferation. The structure and morphology of the silver nanoparticles were investigated by using scanning and transmission electron microscopy.
View Article and Find Full Text PDFRationale And Objectives: The aim of this study was to identify the optimal parameter configuration of a new algorithm for fully automatic segmentation of hepatic vessels, evaluating its accuracy in view of its use in a computer system for three-dimensional (3D) planning of liver surgery.
Materials And Methods: A phantom reproduction of a human liver with vessels up to the fourth subsegment order, corresponding to a minimum diameter of 0.2 mm, was realized through stereolithography, exploiting a 3D model derived from a real human computed tomographic data set.