There is an urgent need to provide immediate and effective options for the treatment of prostate cancer (PCa) to prevent progression to lethal castration-resistant PCa (CRPC). The mevalonate (MVA) pathway is dysregulated in PCa, and statin drugs commonly prescribed for hypercholesterolemia, effectively target this pathway. Statins exhibit anti-PCa activity, however the resulting intracellular depletion of cholesterol triggers a feedback loop that restores MVA pathway activity, thus diminishing statin efficacy and contributing to resistance.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is a cancer of the immune system. Approximately 20% of pediatric and 50% of adult T-ALL patients have refractory disease or relapse and die from the disease. To improve patient outcome new therapeutics are needed.
View Article and Find Full Text PDFThe enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown.
View Article and Find Full Text PDFBackground: Indoleamine 2,3-dioxygenase (IDO1) inhibition is a promising target as an Alzheimer's disease (AD) Disease-modifying therapy capable of downregulating immunopathic neuroinflammatory processes.
Methods: To aid in the development of IDO inhibitors as potential AD therapeutics, we optimized a lipopolysaccharide (LPS) based mouse model of brain IDO1 inhibition by examining the dosedependent and time-course of the brain kynurenine:tryptophan (K:T) ratio to LPS via intraperitoneal dosing.
Results: We determined the optimal LPS dose to increase IDO1 activity in the brain, and the ideal time point to quantify the brain K:T ratio after LPS administration.
As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory disorders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as Alzheimer's disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19's rapid infectivity and pathology. However, the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analogous immunogenic destruction of their respective organ parenchyma.
View Article and Find Full Text PDFConfined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores.
View Article and Find Full Text PDFSevere acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia, hyposmia, confusion, and headaches.
View Article and Find Full Text PDFWe report on a single-tube biosensor for real-time detection of bacterial pathogens with multiplex capabilities. The biosensor consists of two DNA probes, which bind to the complementary fragment of a bacterial RNA to form a three-way junction (3WJ) nucleic acid structure. One of the probes encodes a fluorescent light-up RNA aptamer under T7 promoter.
View Article and Find Full Text PDFIon-surface interactions can alter the properties of nanopores and dictate nanofluidic transport in engineered and biological systems central to the water-energy nexus. The ion adsorption process, known as "charge regulation", is ion-specific and is dependent on the extent of confinement when the electric double layers (EDLs) between two charged surfaces overlap. A fundamental understanding of the mechanisms behind charge regulation remains lacking.
View Article and Find Full Text PDFAcute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored.
View Article and Find Full Text PDFIn this paper, a potentiometric method is used for monitoring the concentration of glutamine in the bioprocess by employing silicon nanowire biosensors. Just one hydrolyzation reaction was used, which is much more convenient compared with the two-stage reactions in the published papers. For the silicon nanowire biosensor, the AlO sensing layer provides a highly sensitive to solution-pH, which has near-Nernstian sensitivity.
View Article and Find Full Text PDFTwo stereocontrolled, efficient, and modular syntheses of eicosanoid lipoxin B4 (LXB ) are reported. One features a stereoselective reduction followed by an asymmetric epoxidation sequence to set the vicinal diol stereocentres. The dienyne was installed via a one-pot Wittig olefination and base-mediated epoxide ring opening cascade.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia. Although AD is one of the most socioeconomically devastating diseases confronting humanity, no "curative" disease modifying drug has been identified. Recent decades have witnessed repeated failures of drug trials and have called into question the utility of the amyloid hypothesis approach to AD therapeutics design.
View Article and Find Full Text PDFNew Microbes New Infect
November 2021
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the cause of the current global pandemic and has affected more than 188 countries worldwide. Infection by the virus can have diverse clinical manifestations, with one of the most severe clinical manifestation being respiratory failure and the development of acute respiratory distress syndrome. Clinical manifestations of acute respiratory distress syndrome secondary to SARS-CoV-2 are also diverse with a lack of diagnostic tools to distinguish between primary viral infection and secondary bacterial infections.
View Article and Find Full Text PDFCarbon nanotube porins (CNTPs) are biomimetic membrane channels that demonstrate excellent biocompatibility and unique water and ion transport properties. Gating transport in CNTPs with external voltage could increase control over ion flow and selectivity. Herein, we used continuum modeling to probe the parameters that enable and further affect CNTP gating efficiency, including the size and composition of the supporting lipid membrane, slip flow in the carbon nanotube, and the intrinsic electronic properties of the nanotube.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles.
View Article and Find Full Text PDFIncorporation of heterocycles into drug molecules can enhance physical properties and biological activity. A variety of heterocyclic groups is available to medicinal chemists, many of which have been reviewed in detail elsewhere. Oxadiazoles are a class of heterocycle containing one oxygen and two nitrogen atoms, available in three isomeric forms.
View Article and Find Full Text PDFElectrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field.
View Article and Find Full Text PDFMicrofabricated Coulter counters are attractive for point of care (POC) applications since they are label free and compact. However, these approaches inherently suffer from a trade off between sample throughput and sensitivity. The counter measures a change in impedance due to displaced fluid volume by passing cells, and thus the counter's signal increases with the fraction of the sensing volume displaced.
View Article and Find Full Text PDFThe sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis.
View Article and Find Full Text PDFThe blood-brain barrier (BBB), composed of microvascular tight junctions and glial cell sheathing, selectively controls drug permeation into the central nervous system (CNS) by either passive diffusion or active transport. Computational techniques capable of predicting molecular brain penetration are important to neurological drug design. A novel prediction algorithm, termed the Brain Exposure Efficiency Score (BEE), is presented.
View Article and Find Full Text PDFObjective: To determine the overall effectiveness of instrument-assisted soft tissue mobilization (IASTM) in improving range of motion (ROM), pain, strength, and patient-reported function in order to provide recommendations for use. We also sought to examine the influence of IASTM on injured and healthy participants, body part treated, and product used.
Data Sources: We searched the Academic Search Premier, Alt Healthwatch, CINAHL Complete, Cochrane Library, MEDLINE with full text, NLM PubMed, Physical Education Index, Physiotherapy Evidence Database (PEDro), SPORTDiscus with full text, and Web of Science databases for articles published from 1997 through 2016.
The rapidly growing demand for portable electronics, electric vehicles, and grid storage drives the pursuit of high-performance electrical energy storage (EES). A key strategy for improving EES performance is exploiting nanostructured electrodes that present nanoconfined environments of adjacent electrolytes, with the goal to decrease ion diffusion paths and increase active surface areas. However, fundamental gaps persist in understanding the interface-governed electrochemistry in such nanoconfined geometries, in part because of the imprecise and variable dimension control.
View Article and Find Full Text PDF