It has been shown that efficient functioning of photosynthesis and respiration in the cyanobacterium Synechocystis PCC 6803 requires the presence of either cytochrome c6 or plastocyanin. In order to check whether the blue copper protein plastocyanin can act as electron donor to cytochrome c oxidase, we investigated the intermolecular electron transfer kinetics between plastocyanin and the soluble CuA domain (i.e.
View Article and Find Full Text PDFCytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.
View Article and Find Full Text PDFThe genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.
View Article and Find Full Text PDFThe filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain.
View Article and Find Full Text PDFMyeloperoxidase is the most abundant protein in neutrophils and catalyzes the production of hypochlorous acid. This potent oxidant plays a central role in microbial killing and inflammatory tissue damage. 4-Aminobenzoic acid hydrazide (ABAH) is a mechanism-based inhibitor of myeloperoxidase that is oxidized to radical intermediates that cause enzyme inactivation.
View Article and Find Full Text PDF