The recently identified nonsymbiotic hemoglobin gene of the legume possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.
View Article and Find Full Text PDFThe class 1 phytoglobin, LjGlb1-1, is expressed in various tissues of the model legume Lotus japonicus, where it may play multiple functions by interacting with nitric oxide (NO). One of such functions is the onset of a proper symbiosis with Mesorhizobium loti resulting in the formation of actively N2-fixing nodules. Stable overexpression lines (Ox1 and Ox2) of LjGlb1-1 were generated and phenotyped.
View Article and Find Full Text PDFNitrogen fixation is an agronomically and environmentally important process catalyzed by bacterial nitrogenase within legume root nodules. These unique symbiotic organs have high metabolic rates and produce large amounts of reactive oxygen species that may modify proteins irreversibly. Here, we examined two types of oxidative posttranslational modifications of nodule proteins: carbonylation, which occurs by direct oxidation of certain amino acids or by interaction with reactive aldehydes arising from cell membrane lipid peroxides; and glycation, which results from the reaction of lysine and arginine residues with reducing sugars or their autooxidation products.
View Article and Find Full Text PDFGlobins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O(2) transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O(2) and facilitate its diffusion to the N(2)-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence.
View Article and Find Full Text PDFCommon beans (Phaseolus vulgaris L.) were exposed to continuous darkness to induce nodule senescence, and several nodule parameters were investigated to identify factors that may be involved in the initial loss of N2 fixation. After only 1 d of darkness, total root respiration decreased by 76% and in vivo nitrogenase (N2ase) activity decreased by 95%.
View Article and Find Full Text PDFThe effect of short-term nitrate application (10 mM, 0-4 d) on nitrogenase (N2ase) activity, antioxidant defenses, and related parameters was investigated in pea (Pisum sativum L. cv Frilene) nodules. The response of nodules to nitrate comprised two stages.
View Article and Find Full Text PDF