The Pb2Bi2Te5 compound has been reported in the literature with two stacking sequences -Te-Pb-Te-Bi-Te-Bi-Te-Pb-Te- and -Te-Bi-Te-Pb-Te-Pb-Te-Bi-Te- labelled in this work as A and B, respectively. The electronic and the thermoelectric properties of the Pb2Bi2Te5 compound with the 2 different stacking sequences have been determined from a series of first principles calculations using density functional theory (DFT). The related compounds PbTe and Bi2Te3 have also been investigated for comparison.
View Article and Find Full Text PDFPlatinum is the most employed electrocatalyst for the reactions taking place in energy converters, such as the oxygen reduction reaction in proton exchange membrane fuel cells, despite being a very low abundant element in the earth's crust and thus extremely expensive. The search for more active electrocatalysts with ultra-low Pt loading is thus a very active field of investigation. Here, surface-limited redox replacement (SLRR) that utilizes the monolayer-limited nature of underpotential deposition (UPD) was used to prepare ultrathin deposits of Pt, using Te as sacrificial metal.
View Article and Find Full Text PDF