Deep mass spectrometry-based proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present a protocol for droplet-based one-pot preparation for proteomic samples (DROPPS), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. We describe steps for depositing cellular material, cell lysis, and digesting proteins in the same microliter-droplet well.
View Article and Find Full Text PDFBiofluids contain molecules in circulation and from nearby organs that can be indicative of disease states. Characterizing the proteome of biofluids with DIA-MS is an emerging area of interest for biomarker discovery; yet, there is limited consensus on DIA-MS data analysis approaches for analyzing large numbers of biofluids. To evaluate various DIA-MS workflows, we collected urine from a clinically heterogeneous cohort of prostate cancer patients and acquired data in DDA and DIA scan modes.
View Article and Find Full Text PDFDeep proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present DROPPS (droplet-based one-pot preparation for proteomic samples), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. By applying DROPPS within the mammary epithelium, we elucidated the connection between mitochondrial activity and clonogenicity, identifying CD36 as a marker of progenitor capacity in the basal cell compartment.
View Article and Find Full Text PDF