To reach the estimated food demands for 2050 in decreasingly suiting climates, current agricultural techniques have to be complemented by sustainably intensified practices. The current study repurposed wheat crop residues into biochar, and investigated its potential in different plant cultivation systems, including a hydroponic cultivation of wheat. Biochars resulting from varying pyrolysis parameters including feedstock composition (straw and chaff) and temperature (450°C and 600°C), were tested using a fast plant screening method.
View Article and Find Full Text PDFAccidental release of radiocaesium (Cs) from nuclear power plants may result in long-term contamination of environmental and food production systems. Assessment of food chain contamination with Cs relies on Cs soil-to-plant transfer data and models mainly available for regions affected by the Chornobyl and Fukushima accidents. Similar data and models are lacking for other regions.
View Article and Find Full Text PDFMost plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A.
View Article and Find Full Text PDFCurrent radiocesium (Cs) models to evaluate the risk of Cs transfer from soil to plants are based on the clay and exchangeable potassium (K) contents in soil. These models disregard the mineralogy of the clay fraction and are likely not capable of accurately predicting the Cs transfer factor (TF) in soils of contrasting parent rocks and weathering stages. The objectives of this study were to test that hypothesis and to identify whether quantitative information on mineralogy can improve the predictions.
View Article and Find Full Text PDF