Publications by authors named "M di Martino"

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Background: Tractography allows the in vivo study of subcortical white matter, and it is a potential tool for providing predictive indices on post-operative outcomes. We aim at establishing whether there is a relation between cognitive outcome and the status of the inferior fronto-occipital fasciculus's (IFOF's) microstructure.

Methods: The longitudinal neuropsychological data of thirty young (median age: 35 years) patients operated on for DLGG in the left temporo-insular cortex along with pre-surgery tractography data were processed.

View Article and Find Full Text PDF

Brexucabtagene autoleucel (brexu-cel) has revolutionized the treatment of patients affected by mantle cell lymphomas. In this prospective, observational multicentre study, we evaluated 106 patients, with longitudinal brexu-cel kinetics in peripheral blood monitored in 61 of them. Clinical outcomes and toxicities are consistent with previous real-world evidence studies.

View Article and Find Full Text PDF

Diabetic peripheral polyneuropathy (DPN) is the most common cause for diabetic foot complications, including diabetic ulcers, Charcot arthropathy, and lower limb amputations. Spinal Cord Stimulation (SCS) is a safe and effective treatment used for pain reduction in neuropathic/nociceptive pain conditions; the most common stimulation modalities used for the management of painful diabetic neuropathy were conventional paresthesia-based and high-frequency SCS, which stimulate the A beta fibers in the dorsal column of the spinal cord. Differential Target Multiplexed (DTM) SCS is a novel paresthesia-free stimulation technique targeting the supportive glial cells in the nervous system, modulating glial cells and neurons with a rebalance of their interactions.

View Article and Find Full Text PDF

Adrenocortical carcinomas (ACCs) are rare and aggressive malignancies of adrenal cortex, associated with largely unknown mechanisms of biological development and poor prognosis. Currently, mitotane is the sole approved drug for treating advanced adrenocortical carcinomas (ACCs) and is being utilized more frequently as postoperative adjuvant therapy. Although it is understood that mitotane targets the adrenal cortex and disrupts steroid production, its precise mechanism of action requires further exploration.

View Article and Find Full Text PDF