Correction for 'Performance of ferrite nanoparticles in inductive heating swing adsorption (IHSA): how tailoring material properties can circumvent the design limitations of a system' by Maxim De Belder , , 2024, , 4144-4149, https://doi.org/10.1039/d4mh00377b.
View Article and Find Full Text PDFBackground: Whether a conservative strategy of medical therapy alone or a strategy of medical therapy plus invasive treatment is more beneficial in older adults with non-ST-segment elevation myocardial infarction (NSTEMI) remains unclear.
Methods: We conducted a prospective, multicenter, randomized trial involving patients 75 years of age or older with NSTEMI at 48 sites in the United Kingdom. The patients were assigned in a 1:1 ratio to a conservative strategy of the best available medical therapy or an invasive strategy of coronary angiography and revascularization plus the best available medical therapy.
Inductive heating swing adsorption (IHSA) using hybrid adsorbents incorporating a porous material and ferrite nanoparticles holds promise to be a performant, electrified alternative for conventional gas separation. Successful implementation of hybrid adsorbents in IHSA depends on achieving a maximal specific absorption rate (SAR) in the conditions and at the frequency of the induction setup. This paper outlines and demonstrates successful strategies for optimization of the particle composition, tailoring the coercivity and susceptibility of the ferrite particles to optimal performance in a given alternating magnetic field.
View Article and Find Full Text PDF