Objective: This study aimed: (i) to investigate the impact of fatigue, triggered by maximal isometric contraction exercises, on the active and passive stiffness of plantar flexors (PF), and (ii) to examine the relationship between changes in mechanical parameters and neuromuscular alterations after fatigue.
Methods: A healthy cohort (n = 12; age = 27.3 ± 5.
Objectives: One main challenge for textile implants is to limit the foreign body reaction (FBR) and in particular the fibrosis development once the device is implanted. Fibrotic tissue in-growth depends on the fiber size, the pore size, and the organization of the fibrous construction. Basically, non-woven fibrous assemblies present a more favorable interface to biological tissues than do woven structures.
View Article and Find Full Text PDFSeveral studies have investigated muscle rigidity using SWE. However, the assessments may not consider the most affected regions within the same muscle tissue nor the intramuscular variability of rigidity between muscles of the same muscle group, e.g.
View Article and Find Full Text PDFObjectives: This study aims to investigate the mechanical properties of paretic and healthy plantar flexor muscles and assesses the spatial distribution of stiffness between the gastrocnemius medialis (GM) and lateralis (GL) during active force generation.
Methods: Shear wave elastography measurements were conducted on a control group (CNT, n=14; age=59.9±10.
J Mech Behav Biomed Mater
February 2024
The purpose of this study was to evaluate the effects of immobilization on mechanical properties of skeletal muscle over the time. An in vivo rat model was used to investigate the shear modulus change of the flexor carpi ulnaris (FCU) in a short position. Measurements were performed by shear wave elastography (SWE) to compare contralateral and immobilized cases.
View Article and Find Full Text PDF