The dynamics of the conjugated polymers poly(9,9-dioctylfluorene) (PF8) and poly(9,9-didodecylfluorene) (PF12), differing by the length of their side chains, is investigated in the amorphous phase using the temperature-dependent quasielastic neutron scattering (QENS) technique. The neutron spectroscopy measurements are synergistically underpinned by molecular dynamics (MD) simulations. The probe is focused on the picosecond time scale, where the structural dynamics of both PF8 and PF12 would mainly be dominated by the motions of their side chains.
View Article and Find Full Text PDFThe processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the popular alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic hydrogen evolution. Beyond the differences in polarity, the carbon-oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example.
View Article and Find Full Text PDFThe quest for efficient and economically accessible cleaner methods to develop sustainable carbon-free energy sources induced a keen interest in the production of hydrogen fuel. This can be achieved via the water-splitting process and by exploiting solar energy. However, the use of adequate photocatalysts is required to reach this goal.
View Article and Find Full Text PDFCharge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials.
View Article and Find Full Text PDF