Publications by authors named "M Zapletalova"

Astrocytes are specialized glial cell types of the central nervous system (CNS) with remarkably high abundance, morphological and functional diversity. Astrocytes maintain neural metabolic support, synapse regulation, blood-brain barrier integrity and immunological homeostasis through intricate interactions with other cells, including neurons, microglia, pericytes and lymphocytes. Due to their extensive intercellular crosstalks, astrocytes are also implicated in the pathogenesis of CNS disorders, such as ALS (amyotrophic lateral sclerosis), Parkinson's disease and Alzheimer's disease.

View Article and Find Full Text PDF

Background: Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question.

View Article and Find Full Text PDF

16S rRNA amplicon sequencing or, more recently, metatranscriptomic analysis are currently the only preferred methods for microbial profiling of samples containing a predominant ratio of human to bacterial DNA. However, due to the off-target amplification of human DNA, current protocols are inadequate for bioptic samples. Here we present an efficient, reliable, and affordable method for the bacteriome analysis of clinical samples human DNA content predominates.

View Article and Find Full Text PDF
Article Synopsis
  • Recent RNA sequencing studies shed light on how carbohydrate sources affect the cariogenic properties of Streptococcus mutans, a key player in dental caries.
  • The bacterium ferments certain carbohydrates, especially sucrose, leading to acid production that lowers pH and contributes to tooth demineralization.
  • Research reveals that while xylitol and lactose influence biofilm formation and bacterial metabolism, they don't significantly reduce biofilm formation, thereby maintaining a cariogenic environment.
View Article and Find Full Text PDF

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato.

View Article and Find Full Text PDF