This study investigates the use of various industrial waste materials-silica fume (SF), cement kiln dust (CKD), calcium carbide residue (CCR), rice husk ash (RHA), and ground granulated blast furnace slag (GGBS)-as eco-friendly stabilizers for expansive clay soil (ECS). Laboratory tests were conducted to assess the impact of different proportions (3 %, 6 %, and 9 %) of these additives on the soil's physical, mechanical, and microstructural properties. Results indicated that the inclusion of industrial waste significantly improved the soil's behavior, with notable reductions in liquid limit (up to 37.
View Article and Find Full Text PDFThe surging demand for sustainable and efficacious approaches of enhancing the ground has resulted in the investigation of novel waste materials. This study investigates the utilization of Polyoxymethylene (POM) as a granular column to ameliorate the ability of soft clay soil to resist horizontal loads. The study introduces a new implementation of polyoxymethylene columns as ground improvement approach to tackle the complexities related to soft clay soils.
View Article and Find Full Text PDFThis study was aimed at evaluating the removal of different cationic dyes onto phosphoric acid-activated coconut shell carbon. The activated carbon was characterized for surface functional groups, thermal decomposition profiles, surface morphology, and textural properties. The specific area was recorded as 1,221 m/g with 100% mesoporosity.
View Article and Find Full Text PDFThe work was aimed at evaluating the adsorptive properties of waste newspaper (WN) activated carbons chemically produced using sodium salts for methylene blue (MB) and congo red (CR) removal. The activated carbons, designated as AC1, AC2, AC3 and AC4 were prepared through impregnation with NaHPO, NaCO, NaCl and NaOH, respectively and activation at 500 °C for 1 h. The activated carbons were characterized for surface chemistry, thermal stability, specific area, morphology and composition.
View Article and Find Full Text PDF