Phys Chem Chem Phys
August 2023
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances.
View Article and Find Full Text PDFEnergetic materials (EMs) are the core materials of weapons and equipment. Achieving precise molecular design and efficient green synthesis of EMs has long been one of the primary concerns of researchers around the world. Traditionally, advanced materials were discovered through a trial-and-error processes, which required long research and development (R&D) cycles and high costs.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
October 2022
The genus Xanthomonas comprises phytopathogenic bacteria which infect about 400 host species, including a wide variety of economically important plants. Xanthomonas oryzae pv. oryzicola (Fang et al.
View Article and Find Full Text PDFThe maintenance of intracellular nitrogen-fixing bacteria causes changes in proteins' location and in gene expression that may be detrimental to the host cell fitness. We hypothesized that the nodule's high vulnerability toward salt stress might be due to alterations in mechanisms involved in the exclusion of Na from the host cytoplasm. Confocal and electron microscopy immunolocalization analyses of Na/K exchangers in the root nodule showed the plasma membrane (MtNHX7) and endosome/tonoplast (MtNHX6) signal in non-infected cells; however, in mature infected cells the proteins were depleted from their target membranes and expelled to vacuoles.
View Article and Find Full Text PDFThe nanosized (50-70 nm) pyrochlore BiFeTiO was prepared by a coprecipitation technique. Characterization of BiFeTiO was carried out by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman spectroscopy, Mössbauer spectroscopy, and magnetic susceptibility measurements. The study of Fe doping in BiTiO was performed by means of density functional theory (DFT) calculations.
View Article and Find Full Text PDF