Publications by authors named "M Yu Chernukha"

A method has been proposed for creating an operationally durable copper coating with antimicrobial properties for the buttons of electrical switches based on the gas dynamic spray deposition of copper on acrylonitrile butadiene styrene (ABS) plastic. It is shown that during the coating process, a polymer film is formed on top of the copper layer. Comparative in situ studies of microbial contamination have shown that the copper-coated buttons have a significant antimicrobial effect compared to standard buttons.

View Article and Find Full Text PDF

The global spread of multidrug-resistant (MDR) hospital-acquired pathogens is a serious problem for healthcare units. The challenge of the spreading of nosocomial infections, also known as hospital-acquired pathogens, including Pseudomonas aeruginosa, must be addressed not only by developing effective drugs, but also by improving preventive measures in hospitals, such as passive bactericidal coatings deposited onto the touch surfaces. In this paper, we studied the antibacterial activity of superhydrophilic and superhydrophobic copper surfaces against the strain PA103 and its four different polyresistant clinical isolates with MDR.

View Article and Find Full Text PDF

Lung disease caused by is the leading reason for death in cystic fibrosis patients. Therapeutic efficacy of the pharmacological pairs, the naked/encapsulated mutant form of methionine γ-lyase and the substrates, sulfoxides of S-substituted l-cysteine, generating thiosulfinates, was evaluated on the murine model of experimental sepsis caused by the multidrug-resistant 203-2 strain. The pairs containing the naked enzyme and substrates did not have antibacterial activity.

View Article and Find Full Text PDF

The multiresistance of 155B, 122, and 48B strains isolated from patients with cystic fibrosis was established. The antibacterial effect of allicin, dimethyl thiosulfinate, and dipropyl thiosulfinate on multidrug-resistant strains was shown. Thiosulfinates can have both bacteriostatic and bactericidal effects depending on the microorganism and the concentration.

View Article and Find Full Text PDF

Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed.

View Article and Find Full Text PDF