Purpose: The aim of the current study was to evaluate changes in choroidal circulation hemodynamics after periocular skin warming at 40°C using laser speckle flowgraphy (LSFG).
Methods: Twenty-four right eyes of 24 healthy participants were included. Changes in choroidal circulation hemodynamics were determined using LSFG to evaluate the mean blur rate (MBR) of the macula, which represents choroidal blood flow velocity.
Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.
View Article and Find Full Text PDFThermal switches, which electrically turn heat flow on and off, have attracted attention as thermal management devices. Electrochemical reduction/oxidation switches the thermal conductivity (κ) of active metal oxide films. The performance of the previously proposed electrochemical thermal switches is low; the on/off κ-ratio is mostly less than 5, and the κ-switching width is less than 5 watts per meter kelvin.
View Article and Find Full Text PDFB-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.
View Article and Find Full Text PDF