The Paediatric Use Marketing Authorisation (PUMA) was introduced in the European Union to incentivise the development of off-patent medicines in children. However, there is limited data on the accessibility of PUMA products at the healthcare provider level. This study aimed to identify factors affecting real-world accessibility to PUMA products in the United Kingdom (UK).
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is a significant global health concern, with chronic hepatitis B virus (HBV) infection being a major contributor. Understanding the mechanisms of HBV-associated HCC is crucial to improving the prognosis and developing effective treatments.
Methods: HBV-associated HCC datasets (GSE19665, GSE121248, GSE55092, GSE94660, and TCGA-LIHC) acquired from public databases were mined to identify key driver genes by differentially expressed gene analysis, weighted gene co-expression network analysis (WGCNA), followed by protein-protein interaction network analysis, Lasso-Cox regression analysis, and randomforestSRC algorithm.
The necrosis of pancreatic acinar cells is a key molecular event in the progression of acute pancreatitis (AP), with disturbances in mitochondrial energy metabolism considered to be a direct causative factor of acinar cell necrosis. Histidine triad nucleotide-binding protein 2 (HINT2) has been implicated in the development of various diseases, whereas its involvement in the progression of AP remains unclear. This study aims to investigate the role of HINT2 in AP.
View Article and Find Full Text PDFThe properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.
View Article and Find Full Text PDFAs one of the most influential environmental factors, light fundamentally shapes plant physiology and growth traits. The hypocotyl is critical for the morphological establishment of the seedling, and its length displays remarkable plasticity upon perception of changes in the light conditions. Although remodeling of the primary cell walls is well-documented to play an important role in hypocotyl growth, how the hypocotyl elongation rate is swiftly repressed at the dark-to-light transition remains elusive.
View Article and Find Full Text PDF